Пример выполнения лабораторной работы № 5.

10.1. Построение криволинейной трапеции, соответствующей интегралу $I = \int_{1.3}^{2.5} \frac{dx}{\sqrt{0.2x^2 + 1}}$.

Определенный интеграл $I = \int_a^b f(x) dx$ численно равен площади криволинейной трапеции — фигуры, ограниченной графиком функции y = f(x), отрезком оси абсцисс [a,b], прямой x = a и прямой x = b.

Для построения криволинейной трапеции необходимо построить графики функций y=f(x) (подынтегральная функция), x=a, x=b.

График функции

$$\frac{1}{\sqrt{0.2 \, x^2 + 1}}$$

$$x = 2,5$$

X	У
0	1
0,2	0,996024
0,4	0,984374
0,6	0,965834
0,8	0,941554
1	0,912871
1,2	0,881134
1,4	0,847579
1,6	0,81325
1,8	0,778971
2	0,745356
2,2	0,712832
2,4	0,681677
2,6	0,652051
2,8	0,624026
3	0,597614
3,2	0,572786
3,4	0,549484
3,6	0,527633

X	У
1,3	0
1,3	0,2
1,3	0,4
1,3	0,6
1,3	0,8
1,3	1
1,3	1,2
1,3	1,4
1,3	1,6
1,3	1,8

X	У
2,5	0
2,5	0,2
2,5	0,4
2,5	0,6
2,5	0,8
2,5	1
2,5	1,2
2,5	1,4
2,5	1,6
2,5	1,8

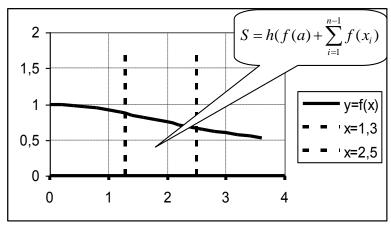


Рис.10.1

10.2.1 Вычисление интеграла методом левых прямоугольников.

Вычислим приближенное значение интеграла $I = \int_{1.3}^{2.5} \frac{dx}{\sqrt{0.2x^2 + 1}}$

 $\underline{\Phi o p M y n a}$ левых прямоугольников для нахождения приближенного значения определенного интеграла: $S = h(f(a) + \sum_{i=1}^{n-1} f(x_i))$.

Количество точек разбиения отрезка [a,b] n=10. Разобьем интервал интегрирования [a,b] на n равных частей длиной $h = \frac{b-a}{n}$; h называют maxom maxom

	Α	В	С	D	Е	F	G
1						=(B3-A3)/C:	3
2	а	b	n	h=(b-a)/n		(6575)75	٠
3	1,3	2,5	10	0,121			
4							

Получим точки x_0 = $a, x_1, x_2, ..., x_{n-1}, x_n$ =b, их называют *узлами интегрирования*.

	G9	▼	∱ =\$D\$3*CYMN	1(D6:D15)				
	Α	В	С	D	Е	F	G	Н
1								_
2	а	b	n	h=(b-a)/n		=	1	
3	1,3	2,5	10	0,12			$\sqrt{0.2x^2+1}$	J
4					=	_		
5		Χ		y —				
6	a=x0=	1,3	f(a)=f(x0)=	0,864513826				
7	x1=	1,42	f(x1)=	0,844165953				
8	x2=	1,54	f(x2)=	0,823576833				
9	x3=	1,66	f(x3)=	0,802929291		S=	0,9278613	
10	x4=	1,78	f(x4)=	0,782377773				
11	x5=	1,9	f(x5)=	0,762049928				
12	х6=	2,02	f(x6)=	0,742048877				
13	x7=	2,14	f(x7)=	0,722455854				
14	x8=	2,26	f(x8)=	0,703332974				
15	x9=	2,38	f(x9)=	0,684725953				
16	b=x10=	2,5	f(b)=f(x10)=	0,666666667				
17			•					

10.2.2 Вычисление интеграла методом правых прямоугольников.

Аналогично п. 10.2.1 вычислим приближенное значение интеграла $I = \int\limits_{1.3}^{2.5} \frac{dx}{\sqrt{0.2x^2+1}}$ методом правых прямоугольников $I \approx 0,9041196$.

10.2.3 Вычисление интеграла методом трапеций.

Аналогично п. 10.2.1 вычислим приближенное значение интеграла $I=\int\limits_{1.3}^{2.5} \frac{dx}{\sqrt{0.2x^2+1}}$ методом трапеций $I\approx 0,9159904$

10.2.4 Вычисление интеграла методом Симпсона.

Формула Симпсона для нахождения приближенного значения определенного

интеграла:
$$S = \frac{h}{3}(f(a) + f(b) + 2\{f(x_2) + f(x_4) + \ldots + f(x_{2n-2})\} + 4\{f(x_1) + f(x_3) + \ldots + f(x_{2n-1})\})$$
.

Количество точек разбиения отрезка [a,b] 2n=20. Разобьем интервал интегрирования [a,b] на 2n равных частей длиной $h=\frac{b-a}{2n}$

_	F14	~	£ = 13/3*(D2	+D22+CYMM(I	13·D21))					
	A	В	C C	D	E	F	G	Н	1	J
1	i	Χi	Уi						•	
2	0	1,3	0,86451383	0,864513826		а	b	n	2n	h=(b-a)/n
3	1	1,36	0,8543826	3,417530414		1,3	2,5	10	20	0,06
4	2	1,42	0,84416595	1,688331906						
5	3		0,83388945	3,33555778						
6	4	1,54	0,82357683	1,647153666						
7	5	1,6								
8	6	1,66		1,605858581						
9	7	1,72	0,79263295							
10	8	1,78		1,564755546						
11	9	1,84	0,7721789	3,088715605						
12	10	1,9	0,76204993							
13	11	1,96	0,752003	3,008011982						
14	12	2,02	0,74204888	1,484097754	s=	0,915967				
15	13	2,08	0,73219706	2,928788257						
16	14	2,14	0,72245585	1,444911708						
17	15	2,2	0,71283244	2,851329743						
18	16	2,26	0,70333297	1,406665948						
19	17	2,32	0,69396269	2,775850772						
20	18	2,38	0,68472595	1,369451906						
21	19	2,44	0,67562633	2,702505303						
22	20	2,5	0,66666667	0,666666667						

	DO	1	e					_	_		
	B3		<i>f</i> ₂ =B2+\$J\$3		_						
	Α	В	С	D	E	F	G	H		J	1
1	İ	Χi	y i								
2	0	1,3	=1/KOPEHb(0,2*B2^2+1)	=1/KOPEHb(0,2*B2^2+1)	П	а	b	n	2n	h=(b-a)/n	
3	1	=B2+\$J\$3	<u> </u> =1/КОРЕНЬ(0,2*В3^2+1)	=ECЛИ(OCTAT(A3;2)=1;4*C3;2*C3)	П	1,3	2,5	10	20	=(G3-F3)/I3	1
4	2	=B3+\$J\$3	(=1/КОРЕНь(0,2*В4^2+1)	=ECЛИ(OCTAT(A4;2)=1;4*C4;2*C4)							П
5	3	=B4+\$J\$3	=1/KOPEHb(0,2*B5^2+1)	=ECЛИ(OCTAT(A5;2)=1;4*C5;2*C5)							TE
6	4	=B5+\$J\$3	=1/KOPEHb(0,2*B6^2+1)	=ECЛИ(OCTAT(A6;2)=1;4*C6;2*C6)							
7	5	=B6+\$J\$3	=1/KOPEHb(0,2*B7^2+1)	=ECЛИ(OCTAT(A7;2)=1;4*C7;2*C7)							П
8	6	=B7+\$J\$3	=1/KOPEHb(0,2*B8^2+1)	=ECЛИ(OCTAT(A8;2)=1;4*C8;2*C8)							
9	7	=B8+\$J\$3	=1/KOPEHb(0,2*B9^2+1)	=ECЛИ(OCTAT(A9;2)=1;4*C9;2*C9)							T-
10	8	=B9+\$J\$3	=1/KOPEHb(0,2*B10^2+1)	=ECЛИ(OCTAT(A10;2)=1;4*C10;2*C10)							T
11	9	=B10+\$J\$3	=1/KOPEHb(0,2*B11^2+1)	=ECЛИ(OCTAT(A11;2)=1;4*C11;2*C11)							T
12	10	=B11+\$J\$3	=1/KOPEHb(0,2*B12^2+1)	=ECЛИ(OCTAT(A12;2)=1;4*C12;2*C12)							Т
13	11	=B12+\$J\$3	=1/KOPEHb(0,2*B13^2+1)	=ECЛИ(OCTAT(A13;2)=1;4*C13;2*C13)							Т
14	12	=B13+\$J\$3	=1/KOPEHb(0,2*B14^2+1)	=ECЛИ(OCTAT(A14;2)=1;4*C14;2*C14)	s	=J3	/3*(D	2+D	22+	СУММ(D3:D21)))
15	13	=B14+\$J\$3	=1/KOPEHb(0,2*B15^2+1)	=ECЛИ(OCTAT(A15;2)=1;4*C15;2*C15)							Т
16	14	=B15+\$J\$3	=1/KOPEHb(0,2*B16^2+1)	=ECЛИ(OCTAT(A16;2)=1;4*C16;2*C16)							Т
17	15	=B16+\$J\$3	=1/KOPEHb(0,2*B17^2+1)	=ECЛИ(OCTAT(A17;2)=1;4*C17;2*C17)							П
18	16	=B17+\$J\$3	=1/KOPEHb(0,2*B18^2+1)	=ECЛИ(OCTAT(A18;2)=1;4*C18;2*C18)							П
19	17		=1/KOPEHb(0,2*B19^2+1)	=ECЛИ(OCTAT(A19;2)=1;4*C19;2*C19)							П
20	18	=B19+\$J\$3	=1/KOPEHb(0,2*B20^2+1)	=ECЛИ(OCTAT(A20;2)=1;4*C20;2*C20)							П
21	19		=1/KOPEHb(0,2*B21^2+1)	=ECЛИ(OCTAT(A21;2)=1;4*C21;2*C21)	1						П
22	20	=B21+\$J\$3	=1/KOPEHb(0,2*B22^2+1)	=1/KOPEHb(0,2*B22*2+1)	1						~
				(2)	•		1		-		1

Приближенное значение интеграла по формуле Симпсона $I = \int_{1.3}^{2.5} \frac{dx}{\sqrt{0.2x^2 + 1}} \approx 0,915967$