——

HALIOHANBHUA
YHIBEPCUTET

KOPABJIEBYAYBAHHS
IMEHI AIMIPAJIA MAKAPOBA

Java 8 Stream APl«——

Java

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua



mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

Outline

e Stream Building Blocks
—Java 8
— Default Methods
— Functional Interfaces
— Lambda Expressions

— Method References




Outline

e Characteristics of Streams

* Creating Streams

e Common Functional Interfaces Used

* Anatomy of the Stream pipeline

e Optional Class

e Common Stream APl Methods Used
— Examples

* Parallel Streams

 Unbounded (On the Fly) Streams

 What Could Streams Do For BMI

* References

 (Questions?



e Release Date: 18 March 2014

* Introduces
— Default Methods
— Functional Interfaces

— Lambda Expressions

— Stream API and overall improvements to
Collections to support Streams



Default Methods

* |n Context of Support For Streams

— Java 8 needed to add functionality to existing

Collection interfaces to support Streams (stream(),
forEach())




Default Methods

* Problem

— Pre-Java 8 interfaces couldn’t have method
bodies.

— The only way to add functionality to Interfaces
was to declare additional methods which would

be implemented in classes that implement the
interface

— It is impossible to add methods to an interface
without breaking the existing implementation



Default Methods

e Solution
— Default Methods!

— Java 8 allows default methods to be added to
interfaces with their full implementation

— Classes which implement the interface don’t have
to have implementations of the default method

— Allows the addition of functionality to interfaces
while preserving backward compatibility



Default Methods

 Example

public interface A {
default void foo(){
System.out.println("Calling A.foo()");
1

}

public class Clazz implements A {}

Clazz clazz = new Clazz();
clazz.foo(); // Calling A.foo()



Functional Interfaces

* |Interfaces with only one abstract method.

* With only one abstract method, these interfaces
can be easily represented with lambda
expressions

 Example

@FunctionallInterface
public interface SimpleFuncInterface {

public void doWork();
1



Lambda expressions

A more brief and clearly expressive way to implement functional interfaces
* Format: <Argument List> -> <Body>
* Example (Functional Interface)

public interface Predicate<T> {
boolean test(T input);
+

 Example (Static Method)
public static <T> Collection<T> filter(Predicate<T> predicate,

Collection<T> items) {
Collection<T> result = new ArrayList<T>();

for(T item: items) {
if(predicate.test(item)) {
result.add(item);
}

}
}

Example (Call with Lambda Expression)
Collection<Integer> myInts = asList(0,1,2,3,4,5,6,7,8,9);
Collection<Integer> onlyOdds = filter(n -> n % 2 != 0, myInts)



Method References

 Even more brief and clearly expressive way to implement functional
interfaces

* Format: <Class or Instance>::<Method>

 Example (Functional Interface)
public interface IntPredicates {
boolean isOdd(Integer n) { return n % 2 != 0; }

}

 Example (Call with Lambda Expression)

List<Integer> nums = asList(1,2,3,4,5,6,7,8,9);

List<Integer> odds = filter(n -> IntPredicates.is0dd(n), nums);
 Example (Call with Method Reference)

List<Integer> nums = asList(1,2,3,4,5,6,7,8,9);

List<Integer> odds = filter(IntPredicates::is0dd, nums);



Characteristics of Streams

Streams are not related to InputStreams, OutputStreams, etc.

Streams are NOT data structures but are wrappers around
Collection that carry values from a source through a pipeline of
operations.

Streams are more powerful, faster and more memory efficient than
Lists

Streams are designed for lambdas

Streams can easily be output as arrays or lists
Streams employ lazy evaluation

Streams are parallelizable

Streams can be “on-the-fly”




Creating Streams

* From individual values
— Stream.of(vall, val2, ...)
* From array
— Stream.of(someArray)
— Arrays.stream(someArray)
* From List (and other Collections)
— somelist.stream()
— someOtherCollection.stream()




Common Functional Interfaces

Used

 Predicate<T>

— Represents a predicate (boolean-valued function) of one
argument

— Functional method is boolean test(T t)
* Evaluates this Predicate on the given input argument (T t)

e Returns true if the input argument matches the predicate,
otherwise false

* Supplier<T>
— Represents a supplier of results
— Functional method is T get()
* Returns a result of type T




Common Functional Interfaces

Used

* Function<T,R>

— Represents a function that accepts one argument
and produces a result

— Functional method is R apply(T t)
* Applies this function to the given argument (T t)
* Returns the function result
* Consumer<T>

— Represents an operation that accepts a single input
and returns no result

— Functional method is void accept(T t)
* Performs this operation on the given argument (T t)



Common Functional Interfaces

Used

* UnaryOperator<T>

— Represents an operation on a single operands that
produces a result of the same type as its operand

— Functional method is R Function.apply(T t)
e Applies this function to the given argument (T t)

e Returns the function result




Common Functional Interfaces

Used

BiFunction<TU,R>
— Represents an operation that accepts two arguments and produces a result
— Functional method is R apply(T t, U u)
* Applies this function to the given arguments (T t, U u)
* Returns the function result
* BinaryOperator<T>
— Extends BiFunction<T, T, T>

— Represents an operation upon two operands of the same type, producing a result of the
same type as the operands

— Functional method is R BiFunction.apply(T t, U u)

* Applies this function to the given arguments (T t, U u) where R,T and U are of the
same type

* Returns the function result
* Comparator<T>
— Compares its two arguments for order.
— Functional method is int compareTo(T o1, T 02)

» Returns a negative integer, zero, or a positive integer as the first argument is less
than, equal to, or greater than the second.



Anatomy of the Stream

Pipeline

A Stream is processed through a pipeline of operations
* A Stream starts with a source data structure

* Intermediate methods are performed on the Stream
elements. These methods produce Streams and are not
processed until the terminal method is called.

e The Stream is considered consumed when a terminal
operation is invoked. No other operation can be performed on
the Stream elements afterwards

e A Stream pipeline contains some short-circuit methods (which
could be intermediate or terminal methods) that cause the
earlier intermediate methods to be processed only until the
short-circuit method can be evaluated.



Anatomy of the Stream

Pipeline

* |ntermediate Methods
map, filter, distinct, sorted, peek, limit, parallel
* Terminal Methods

forEach, toArray, reduce, collect, min, max, count,
anyMatch, allMatch, noneMatch, findFirst, findAny, iterator

e Short-circuit Methods

anyMatch, allMatch, noneMatch, findFirst, findAny,limit




Optional<T> Class

* A container which may or may not contain a non-null value
« Common methods

— isPresent() — returns true if value is present

— get() — returns value if present

— orElse(T other) — returns value if present, or other

— ifPresent(Consumer) — runs the lambda if value is present




Common Stream APl Methods

Used

e void forEach(Consumer)
— Easy way to loop over Stream elements

— You supply a lambda for forEach and that lambda is called
on each element of the Stream

— Related peek method does the exact same thing, but
returns the original Stream




Common Stream APl Methods

Used

e void forEach(Consumer)
— Example

employees.forEach(e ->
e.setSalary(e.getSalary() * 11/10))

Give all employees a 10% raise




Common Stream APl Methods

Used

* Void forEach(Consumer)

— Vs. For Loops
List<Employee> employees = getEmployees();
for(Employee e: employees) {

e.setSalary(e.getSalary() * 11/10);

:

— Advantages of forEach
* Designed for lambdas to be marginally more succinct
* Lambdas are reusable
e Can be made parallel with minimal effort



Common Stream APl Methods

Used

e Stream<T> map(Function)

— Produces a new Stream that is the result of applying a Function to
each element of original Stream

— Example
Ilds.map(EmployeeUtils::findEmployeeByld)

Create a new Stream of Employee ids




Common Stream APl Methods

Used

* Stream<T> filter(Predicate)

— Produces a new Stream that contains only the elements of the original
Stream that pass a given test

— Example
employees.filter(e -> e.getSalary() > 100060)

Produce a Stream of Employees with a high salary




Common Stream APl Methods

Used

* Optional<T> findFirst()
— Returns an Optional for the first entry in the Stream
— Example
employees.filter(..).findFirst().orElse(Consultant)

Get the first Employee entry that passes the filter




Common Stream APl Methods

Used

e Object[] toArray(Supplier)
— Reads the Stream of elements into a an array
— Example

Employee[] empArray =
employees.toArray(Employee[]: :new);

Create an array of Employees out of the Stream of Employees




Common Stream APl Methods

Used

e List<T> collect(Collectors.tolList())
* Reads the Stream of elements into a List or any other collection
— Example
List<Employee> empList =
employees.collect(Collectors.toList());

Create a List of Employees out of the Stream of Employees




Common Stream APl Methods

Used

 List<T> collect(Collectors.toList())
— partitioningBy
* You provide a Predicate. It builds a Map where true maps to a List of
entries that passed the Predicate, and false maps to a List that failed
the Predicate.
 Example
Map<Boolean, List<Employee>> richTable =
googlers().collect(
partitioningBy(e -> e.getSalary() > 100000600));

— groupingBy

* You provide a Function. It builds a Map where each output value of
the Function maps to a List of entries that gave that value.

 Example
Map<Department,List<Employee>> deptTable =

employeeStream().collect(groupingBy/(
Employee: :getDepartment));



Common Stream APl Methods

Used

T reduce(T identity, BinaryOperator)

You start with a seed (identity) value, then combine this value with the
first Entry in the Stream, combine the second entry of the Stream, etc.

— Example
Nums.stream().reduce(l, (n1,n2) -> nl*n2)

Calculate the product of numbers

IntStream (Stream on primative int] has build-in sum()
Built-in Min, Max methods




Common Stream APl Methods

Used

e Stream<T> limit(long maxSize)
* Limit(n) returns a stream of the first n elements
— Example
someLongStream.1imit(10)

First 10 elements




Common Stream APl Methods

Used

e Stream<T> skip(long n)
e skip(n) returns a stream starting with element n
— Example
twentyElementStream.skip(5)

Last 15 elements




Common Stream APl Methods

Used

* Stream<T> sorted(Comparator)

— Returns a stream consisting of the elements of this stream, sorted
according to the provided Comparator

— Example
empStream.map(..) .filter(..).limit(..)

.sorted((el, e2) -> el.getSalary() -
e2.getSalary())

Employees sorted by salary




Common Stream APl Methods

Used

e Optional<T> min(Comparator)

— Returns the minimum element in this Stream according to the
Comparator

— Example
Employee alphabeticallyFirst =

ids.stream() .
.map (EmployeeSamples: :findGoogler)

.min((el, e2) ->
el.getLastName()
.compareTo(e2.getLastName())

).get();

Get Googler with earliest lastName



Common Stream APl Methods

Used

e Optional<T> max(Comparator)

— Returns the minimum element in this Stream according to the
Comparator

— Example
Employee richest =
ids.stream()
.map (EmployeeSamples: :findGoogler)
.max((el, e2) ->
el.getSalary() - e2.getSalary()
).get();

Get Richest Employee



Common Stream APl Methods

Used

e Stream<T> distinct()
— Returns a stream consisting of the distinct elements of this stream
— Example
List<Integer> ids2 =
Arrays.asList(9, 10, 9, 10, 9, 10);
List<Employee> emps4 = ids2.stream()
.map(EmployeeSamples: :findGoogler)
.distinct()
.collect(toList());

Get a list of distinct Employees



Common Stream APl Methods

Used

 Boolean anyMatch(Predicate), allMatch(Predicate), noneMatch(Predicate)
— Returns true if Stream passes, false otherwise
— Lazy Evaluation

* anyMatch processes elements in the Stream one element at a time until it finds a
match according to the Predicate and returns true if it found a match

« allMatch processes elements in the Stream one element at a time until it fails a
match according to the Predicate and returns false if an element failed the
Predicate

* noneMatch processes elements in the Stream one element at a time until it finds a
match according to the Predicate and returns false if an element matches the
Predicate

— Example

employeeStream.anyMatch(e -> e.getSalary() > 500000)

Is there a rich Employee among all Employees?



Common Stream APl Methods

Used

* |long count()
— Returns the count of elements in the Stream
— Example
employeeStream.filter(somePredicate).count()

How many Employees match the criteria?




(On The Fly) Streams

Stream<T> generate(Supplier)
— The method lets you specify a Supplier
— This Supplier is invoked each time the system needs a Stream element

— Example

List<Employee> emps = Stream.generate(() -> randomEmployee())
.Limit(n)
.collect(toList());

e Stream<T> iterate(T seed, UnaryOperator<T> f)
— The method lets you specify a seed and a UnaryOperator.

— The seed becomes the first element of the Stream, f(seed) becomes the
second element of the Stream, f(second) becomes the third element, etc.

— Example
List<Integer> powersOfTwo = Stream.iterate(l, n -> n % 2)
.Limit(n)
.collect(toList());
* The values are not calculated until they are needed
* To avoid unterminated processing, you must eventually use a size-limiting method
e This is less of an actual Unbounded Stream and more of an “On The Fly” Stream



Questions?




