
Java 8 Stream API

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

Outline

• Stream Building Blocks

– Java 8

– Default Methods

– Functional Interfaces

– Lambda Expressions

– Method References

Outline

• Characteristics of Streams
• Creating Streams
• Common Functional Interfaces Used
• Anatomy of the Stream pipeline
• Optional Class
• Common Stream API Methods Used

– Examples

• Parallel Streams
• Unbounded (On the Fly) Streams
• What Could Streams Do For BMI
• References
• Questions?

Java 8

• Release Date: 18 March 2014

• Introduces

– Default Methods

– Functional Interfaces

– Lambda Expressions

– Stream API and overall improvements to
Collections to support Streams

Default Methods

• In Context of Support For Streams

– Java 8 needed to add functionality to existing
Collection interfaces to support Streams (stream(),
forEach())

Default Methods

• Problem

– Pre-Java 8 interfaces couldn’t have method
bodies.

– The only way to add functionality to Interfaces
was to declare additional methods which would
be implemented in classes that implement the
interface

– It is impossible to add methods to an interface
without breaking the existing implementation

Default Methods

• Solution

– Default Methods!

– Java 8 allows default methods to be added to
interfaces with their full implementation

– Classes which implement the interface don’t have
to have implementations of the default method

– Allows the addition of functionality to interfaces
while preserving backward compatibility

Default Methods

• Example

public interface A {
default void foo(){

System.out.println("Calling A.foo()");
}

}

public class Clazz implements A {}

Clazz clazz = new Clazz();
clazz.foo(); // Calling A.foo()

Functional Interfaces

• Interfaces with only one abstract method.

• With only one abstract method, these interfaces
can be easily represented with lambda
expressions

• Example

@FunctionalInterface

public interface SimpleFuncInterface {

public void doWork();

}

Lambda expressions

• A more brief and clearly expressive way to implement functional interfaces
• Format: <Argument List> -> <Body>
• Example (Functional Interface)

public interface Predicate<T> {
boolean test(T input);

}
• Example (Static Method)

public static <T> Collection<T> filter(Predicate<T> predicate,
Collection<T> items) {

Collection<T> result = new ArrayList<T>();
for(T item: items) {

if(predicate.test(item)) {
result.add(item);

}
}

}
• Example (Call with Lambda Expression)

Collection<Integer> myInts = asList(0,1,2,3,4,5,6,7,8,9);
Collection<Integer> onlyOdds = filter(n -> n % 2 != 0, myInts)

Method References

• Even more brief and clearly expressive way to implement functional
interfaces

• Format: <Class or Instance>::<Method>

• Example (Functional Interface)

public interface IntPredicates {

boolean isOdd(Integer n) { return n % 2 != 0; }

}

• Example (Call with Lambda Expression)
List<Integer> nums = asList(1,2,3,4,5,6,7,8,9);

List<Integer> odds = filter(n -> IntPredicates.isOdd(n), nums);

• Example (Call with Method Reference)
List<Integer> nums = asList(1,2,3,4,5,6,7,8,9);

List<Integer> odds = filter(IntPredicates::isOdd, nums);

Characteristics of Streams

• Streams are not related to InputStreams, OutputStreams, etc.
• Streams are NOT data structures but are wrappers around

Collection that carry values from a source through a pipeline of
operations.

• Streams are more powerful, faster and more memory efficient than
Lists

• Streams are designed for lambdas
• Streams can easily be output as arrays or lists
• Streams employ lazy evaluation
• Streams are parallelizable
• Streams can be “on-the-fly”

Creating Streams

• From individual values
– Stream.of(val1, val2, …)

• From array
– Stream.of(someArray)
– Arrays.stream(someArray)

• From List (and other Collections)
– someList.stream()
– someOtherCollection.stream()

Common Functional Interfaces
Used

• Predicate<T>
– Represents a predicate (boolean-valued function) of one

argument
– Functional method is boolean test(T t)

• Evaluates this Predicate on the given input argument (T t)
• Returns true if the input argument matches the predicate,

otherwise false

• Supplier<T>
– Represents a supplier of results
– Functional method is T get()

• Returns a result of type T

Common Functional Interfaces
Used

• Function<T,R>
– Represents a function that accepts one argument

and produces a result
– Functional method is R apply(T t)

• Applies this function to the given argument (T t)
• Returns the function result

• Consumer<T>
– Represents an operation that accepts a single input

and returns no result
– Functional method is void accept(T t)

• Performs this operation on the given argument (T t)

Common Functional Interfaces
Used

• UnaryOperator<T>

– Represents an operation on a single operands that
produces a result of the same type as its operand

– Functional method is R Function.apply(T t)

• Applies this function to the given argument (T t)

• Returns the function result

Common Functional Interfaces
Used

• BiFunction<T,U,R>

– Represents an operation that accepts two arguments and produces a result

– Functional method is R apply(T t, U u)

• Applies this function to the given arguments (T t, U u)

• Returns the function result

• BinaryOperator<T>

– Extends BiFunction<T, T, T>

– Represents an operation upon two operands of the same type, producing a result of the
same type as the operands

– Functional method is R BiFunction.apply(T t, U u)

• Applies this function to the given arguments (T t, U u) where R,T and U are of the
same type

• Returns the function result

• Comparator<T>

– Compares its two arguments for order.

– Functional method is int compareTo(T o1, T o2)

• Returns a negative integer, zero, or a positive integer as the first argument is less
than, equal to, or greater than the second.

Anatomy of the Stream
Pipeline

• A Stream is processed through a pipeline of operations
• A Stream starts with a source data structure
• Intermediate methods are performed on the Stream

elements. These methods produce Streams and are not
processed until the terminal method is called.

• The Stream is considered consumed when a terminal
operation is invoked. No other operation can be performed on
the Stream elements afterwards

• A Stream pipeline contains some short-circuit methods (which
could be intermediate or terminal methods) that cause the
earlier intermediate methods to be processed only until the
short-circuit method can be evaluated.

Anatomy of the Stream
Pipeline

• Intermediate Methods

map, filter, distinct, sorted, peek, limit, parallel

• Terminal Methods

forEach, toArray, reduce, collect, min, max, count,
anyMatch, allMatch, noneMatch, findFirst, findAny, iterator

• Short-circuit Methods

anyMatch, allMatch, noneMatch, findFirst, findAny,limit

Optional<T> Class

• A container which may or may not contain a non-null value

• Common methods

– isPresent() – returns true if value is present

– get() – returns value if present

– orElse(T other) – returns value if present, or other

– ifPresent(Consumer) – runs the lambda if value is present

Common Stream API Methods
Used

• void forEach(Consumer)

– Easy way to loop over Stream elements

– You supply a lambda for forEach and that lambda is called
on each element of the Stream

– Related peek method does the exact same thing, but
returns the original Stream

Common Stream API Methods
Used

• void forEach(Consumer)

– Example

employees.forEach(e ->
e.setSalary(e.getSalary() * 11/10))

Give all employees a 10% raise

Common Stream API Methods
Used

• Void forEach(Consumer)

– Vs. For Loops

List<Employee> employees = getEmployees();

for(Employee e: employees) {

e.setSalary(e.getSalary() * 11/10);

}
– Advantages of forEach

• Designed for lambdas to be marginally more succinct

• Lambdas are reusable

• Can be made parallel with minimal effort

Common Stream API Methods
Used

• Stream<T> map(Function)

– Produces a new Stream that is the result of applying a Function to
each element of original Stream

– Example

Ids.map(EmployeeUtils::findEmployeeById)

Create a new Stream of Employee ids

Common Stream API Methods
Used

• Stream<T> filter(Predicate)

– Produces a new Stream that contains only the elements of the original
Stream that pass a given test

– Example

employees.filter(e -> e.getSalary() > 100000)

Produce a Stream of Employees with a high salary

Common Stream API Methods
Used

• Optional<T> findFirst()

– Returns an Optional for the first entry in the Stream

– Example

employees.filter(…).findFirst().orElse(Consultant)

Get the first Employee entry that passes the filter

Common Stream API Methods
Used

• Object[] toArray(Supplier)

– Reads the Stream of elements into a an array

– Example

Employee[] empArray =
employees.toArray(Employee[]::new);

Create an array of Employees out of the Stream of Employees

Common Stream API Methods
Used

• List<T> collect(Collectors.toList())

• Reads the Stream of elements into a List or any other collection

– Example

List<Employee> empList =

employees.collect(Collectors.toList());

Create a List of Employees out of the Stream of Employees

Common Stream API Methods
Used

• List<T> collect(Collectors.toList())
– partitioningBy

• You provide a Predicate. It builds a Map where true maps to a List of
entries that passed the Predicate, and false maps to a List that failed
the Predicate.

• Example
Map<Boolean,List<Employee>> richTable =
googlers().collect(

partitioningBy(e -> e.getSalary() > 1000000));
– groupingBy

• You provide a Function. It builds a Map where each output value of
the Function maps to a List of entries that gave that value.

• Example
Map<Department,List<Employee>> deptTable =
employeeStream().collect(groupingBy(

Employee::getDepartment));

Common Stream API Methods
Used

• T reduce(T identity, BinaryOperator)

• You start with a seed (identity) value, then combine this value with the
first Entry in the Stream, combine the second entry of the Stream, etc.

– Example

Nums.stream().reduce(1, (n1,n2) -> n1*n2)

Calculate the product of numbers

• IntStream (Stream on primative int] has build-in sum()

• Built-in Min, Max methods

Common Stream API Methods
Used

• Stream<T> limit(long maxSize)

• Limit(n) returns a stream of the first n elements

– Example

someLongStream.limit(10)

First 10 elements

Common Stream API Methods
Used

• Stream<T> skip(long n)

• skip(n) returns a stream starting with element n

– Example

twentyElementStream.skip(5)

Last 15 elements

Common Stream API Methods
Used

• Stream<T> sorted(Comparator)

– Returns a stream consisting of the elements of this stream, sorted
according to the provided Comparator

– Example

empStream.map(…).filter(…).limit(…)

.sorted((e1, e2) -> e1.getSalary() –
e2.getSalary())

Employees sorted by salary

Common Stream API Methods
Used

• Optional<T> min(Comparator)
– Returns the minimum element in this Stream according to the

Comparator
– Example

Employee alphabeticallyFirst =
ids.stream()

.map(EmployeeSamples::findGoogler)

.min((e1, e2) ->
e1.getLastName()
.compareTo(e2.getLastName())

).get();

Get Googler with earliest lastName

Common Stream API Methods
Used

• Optional<T> max(Comparator)

– Returns the minimum element in this Stream according to the
Comparator

– Example

Employee richest =

ids.stream()

.map(EmployeeSamples::findGoogler)

.max((e1, e2) ->

e1.getSalary() - e2.getSalary()

).get();

Get Richest Employee

Common Stream API Methods
Used

• Stream<T> distinct()

– Returns a stream consisting of the distinct elements of this stream

– Example

List<Integer> ids2 =

Arrays.asList(9, 10, 9, 10, 9, 10);

List<Employee> emps4 = ids2.stream()

.map(EmployeeSamples::findGoogler)

.distinct()

.collect(toList());

Get a list of distinct Employees

Common Stream API Methods
Used

• Boolean anyMatch(Predicate), allMatch(Predicate), noneMatch(Predicate)

– Returns true if Stream passes, false otherwise

– Lazy Evaluation

• anyMatch processes elements in the Stream one element at a time until it finds a
match according to the Predicate and returns true if it found a match

• allMatch processes elements in the Stream one element at a time until it fails a
match according to the Predicate and returns false if an element failed the
Predicate

• noneMatch processes elements in the Stream one element at a time until it finds a
match according to the Predicate and returns false if an element matches the
Predicate

– Example

employeeStream.anyMatch(e -> e.getSalary() > 500000)

Is there a rich Employee among all Employees?

Common Stream API Methods
Used

• long count()

– Returns the count of elements in the Stream

– Example

employeeStream.filter(somePredicate).count()

How many Employees match the criteria?

(On The Fly) Streams
• Stream<T> generate(Supplier)

– The method lets you specify a Supplier
– This Supplier is invoked each time the system needs a Stream element
– Example
List<Employee> emps = Stream.generate(() -> randomEmployee())

.limit(n)

.collect(toList());

• Stream<T> iterate(T seed, UnaryOperator<T> f)
– The method lets you specify a seed and a UnaryOperator.
– The seed becomes the first element of the Stream, f(seed) becomes the

second element of the Stream, f(second) becomes the third element, etc.
– Example

List<Integer> powersOfTwo = Stream.iterate(1, n -> n * 2)
.limit(n)
.collect(toList());

• The values are not calculated until they are needed
• To avoid unterminated processing, you must eventually use a size-limiting method
• This is less of an actual Unbounded Stream and more of an “On The Fly” Stream

Questions?

