
Java 8,9,10
Lambda Expressions and You

1



Life before Java 8

Extracting employee names

Extracting employee ages

2

public List<String> empNames(List<Employee> employees) {

List<String> e = new ArrayList<>();

for (Employee emp : employees)

e.add(emp.getName());

return e;

}

public List<Integer> empAges(List<Employee> employees) {

List<Integer> e = new ArrayList<>();

for (Employee emp : employees)

e.add(emp.getAge());

return e;

}

DuplicationVariation



Life before Java 8 (cont.)

Lets identify the control structure, and extract the 
behavior into an object

3

public List<String> empNames(List<Employee> employees) {

List<String> e = new ArrayList<>();

for (Employee emp : employees)

e.add(emp.getName());

return $;

}

public interface Mapper<U, T> {

public T map(U u);

}

public <U, T> List<T> map(

List<U> list, Mapper<? super U, ? extends T> m) {

List<T> e = new ArrayList<>();

for (U u : list)

e.add(m.map(u));

return e;

}



Life before Java 8 (cont.)

Extracting employee names

Extracting employee ages

4

List<String> empNames = map(employees, new Mapper<Employee,String>() {

public String map(Employee e) {

return e.getName();

}

});

List<Integer> empAges = map(employees, new Mapper<Employee,Integer>() {

public Integer map(Employee e) {

return e.getAge();

}

});

Redundant



In the Kingdom of Nouns

We removed the code duplication, but this is still very verbose…

Semantically, map is a higher level function
This means that it accepts a function as an argument (or returns a function)

Syntactically, functions do not exist as first class entities
All verbs (functions) have be accompanied by a noun (class)

http://steve-yegge.blogspot.co.il/2006/03/execution-in-kingdom-of-nouns.html

Prior to Java 8, Java was the only programming language in popular use without 
anonymous functions / blocks / lambdas / function pointers
This is not purely a syntactic issue; Java also lacked proper support for such function in its collections and 

standard libraries

Some libraries, like Guava, attempted to fill the void

5

http://steve-yegge.blogspot.co.il/2006/03/execution-in-kingdom-of-nouns.html
https://github.com/google/guava


Enter Java 8!

• Extracting employee names:

• Extracting employee ages:

• Still very verbose compared to other languages (C#, Scala, Python)

– “boiler-plate” ratio lessens when we compose actions (see later)

6

List<String> empNames = employees.stream()

.map(x -> x.getName())

.collect(Collectors.toList());

List<Integer> empAge = employees.stream()

.map(Employee::getAge) // method reference instead of lambda

.collect(Collectors.toList());



Let’s take a deeper look… 

stream() is a default method of List

map is a higher level function of Stream

x -> x.getName() is a lambda expression

collect turns the Stream back to a normal 
Collection (in our case, a List)

Let’s go over each of these terms one by one

7

List<String> empNames = employees.stream()

.map(x -> x.getName())

.collect(Collectors.toList());



default Methods

 default methods are (default) implementations for interfaces

 Can be overridden extending interfaces and implementing classes

 Adds new functionality to an existing interface without breaking all client code

 In our case, we added the stream() method to Collection

8

List<String> empNames = employees.stream()

.map(x -> x.getName())

.collect(Collectors.toList());

interface Foo {

void a(); // regular abstract method

default void b() { // can also be overriden

System.out.println("I'm a default method!");

}

}



Comparison to other languages / features

 So is this the same as multiple inheritance?
 Nope; more similar to Traits
 There is neither conflict resolution nor constructors, so the model is much 

simpler

So are these extension methods (a la C#)?
 No, because extension methods are actually syntactic sugar for static

decorators
 You can’t add methods to library classes (e.g., in C# you can add extension 

methods to String).

 Solutions in other languages
 Ruby – mixins
 Python/Javascript – monkey patching
 Scala – implicits / pimp my library
 Haskell – type classes

9



Higher order functions

map is a higher order function in stream

 A function that takes a function

Other higher order functions in Stream
 filter, map, flatMap, sorted, reduce, …

 Similar libraries in other languages
 LINQ in C#, itertools in Python, Enumerable in Ruby, etc.

10

List<String> empNames = employees.stream()

.map(x -> x.getName())

.collect(Collectors.toList());



Streams 

• Stream is the gateway to the "functional collections" in Java 8
Provide a uniform API (why is this important?)

• We only iterate over a stream once, even if we have two or more 
higher level functions

• This is because streams are lazily evaluated
– Until we collect (or form some other reduction), no iteration 

takes place
collect is a form of mutable reduction

i.e., it reduces to a mutable container
Other reductions include forEach and, well, reduce

• Streams also give us “free” parallelization (why is it so easy?)

11

List<String> empNames = employees.stream()

.parallel()

.map(x -> x.getName())

.collect(Collectors.toList());



Streams: Caveats

• Streams are “single serving” only!
– This code will throw an exception:

– This too:

• Avoid returning Stream from a public function, or keeping 
one as a field,
– An Iterable or Collection is usually more suitable
– Although there are some (rare) cases where it’s appropriate, there are 

usually better (monadic) types

12

Stream<Student> stream = students.stream();

Stream<String> names = stream.map(Student::getName);

Stream<Integer> ages = stream.map(Student::getAge);

Stream<String> names = students.stream.map(Student::getName);

stream.forEach(this::printStudent);

stream.forEach(this::addStudentToDatabase);



Lambdas and SAMs

 The signature for map is: 
map(Function<? super T,? extends R> mapper)

 And here is the signature for Function (default methods retracted):

 An interface which has single abstract (i.e., non-default) method (often abbreviated 
SAM) can be called a functional interface

 Lambdas are just syntactic sugar for implementing functional interfaces
 Method reference (::) and lambdas are interchangeable, where applicable
 References are considered “more elegant” (as we will see later)

 So is Java a functional language now?
 Functions aren’t first-class citizens; functions aren’t even a proper part of the Java language, just a 

standard library interface
 Although an alternative interpretation could argue that interfaces are the new functions

13

List<String> empNames = employees.stream()

.map(x -> x.getName())

.collect(Collectors.toList());

interface Function<T, R> { R apply(T t); }



Lambdas (cont.)

This design choice has a great pro: we can also use lambda with legacy API!
Old code

New code

We can use the convenience @FunctionalInterface annotation to tell the 
compiler that the interface should be functional (a la @Override)

Author: Gal Lalouche - Technion 2017© 14

new Thread(new Runnable() {

@Override

public void run() {

System.out.println("Kill me :[");

}

}).start();

new Thread(() -> System.out.println("PARTEH! :D|-< :D/-< :D\-<)).start();

@FunctionalInterface

interface Foo { void bar(); void bazz(); } // won’t compile



More API examples

 Assure we are not hiring anyone underage

 Find the highest paid individual in the company

 What is returned if the list is empty?

 Instead of working with null, a new type Optional<T> is returned

 Optional<T> can be present (i.e. not null) or empty (i.e. null)

 Has a method get() that returns T or throws an exception

15

assert employees.stream().noneMatch(x -> x.age < 18);

Optional<Employee> opt = employees.stream().maxBy((x, y) -> x.salary – y.salary);

What’s 
this?



Wait, what’s wrong with nulls?

The billion dollar mistake

nulls are incredibly dangerous!
Often unchecked until used

a “sleeper agent” that destroys the application, its origin is hard to trace

By returning an Optional, we are explicit in our result type
Types are better than comments!

Optional also has higher order functions

filter will return empty if the predicate returns false

16

Optional<Employee> richest = …

Optional<Integer> ageOfRichest = richest.map(Employee::getAge);

richestEmployee.filter(x -> x.age >= 18);

https://en.wikipedia.org/wiki/Tony_Hoare#Apologies_and_retractions


Composing Optionals

Optionals compose using flatMap

17

// working with nulls

Student s = getStudent();

if (s == null) 

return null;

Course c = s.getCourse("Software Design");

if (c == null)

return null;

Exam e = c.getMoedA();

if (e == null)

return null;

return e.getGrade();

// but if we returned Optionals…

getStudent()

.flatMap(Student::getCourse)

.flatMap(Course::getMoedA)

.flatMap(Exam::getGrade)



A more complex example

• Get Ukrainian students with a top grade sorted by name in 
Java 7

• In Java 8:

18

List<Student> topGrades = new ArrayList<>();

Collections.sort(students, new Comparator<Student>() {

public int compare(Student student1, Student student2) {

return student1.getName().compareTo(student2.getName());

}

});

for (Student student: students) 

if ("Ukraine".equals(student.getCountry()))

if (student.getGrade() >= 90)

topGrades.add(student);

Sorts in 
place! Why is 

this bad?

Depth of 
3!

List<Students> topStudents = students.stream()

.filter(x -> "Ukraine".equals(x.getCountry()))

.filter(x -> x.getGrade() >= 90)

.sorted(Comparator.comparing(Student::getName))

.collect(Collectors.toList());



Other cool tricks

Sum of all salaries in the company with "map-reduce“

 Count the number of employees by rank

 Streams compose using flatMap too!

19

employees.stream()

.mapToInt(Employee::getSalary)// note the mapToInt... why?

.reduce(0, Integer::sum) 

// could also be done with Lambdas, or simply .sum()

Map<Rank, Long> countByRank = employees.stream().collectors(

Collectors.groupingBy(Employee::getRank, Collectors.counting());

List<Student> allIsraeliStudents = universities.stream()

.flatMap(u -> u.getFaculties().stream())

.flatMap(f -> f.getStudents().stream())

.collect(Collectors.toList());



Declarative versus Imperative programming

Streams and Optionals are an example of moving from imperative code 
to declarative code

In imperative code we write the exact, low level steps:

Create a new list object

Iterate over the original list
For every entry, apply some function f on it

Add the result of f in the new list

Return the new list

In declarative programming, we write a higher level description:
map all elements in the list using some function f

collect to a List

20



Declarative versus Imperative (Cont.)

• Declarative code is shorter, more precise and explicit, more readable, 
and less error-prone
You can do pretty anything inside a for loop

That means you have to read the entire body to know what’s going on

More room for bugs

Declarative code is written in a higher level of abstraction
In our case, maps and filters, rather than object creation and modification

Higher order functions instead of control structures and primitive checks

Less moving parts, hide the unnecessary details

21



Dec. v Imp. – A spectrum, not dichotomy

 Before Java 5, we had to iterate by index, or use the iterator directly
 Even more bugs: infinite loop, index modifications

 Using list.add is more declarative than managing the internal data structure on 
your own
 Using a library/function is usually more declarative than inlining its code

 Applies to syntax, not just semantics
 An array initializer (new int[] {1, 2, 3}) is more declarative than doing it manually

 A lambda expression is more declarative than an anonymous functions, but a method 
reference is more declarative than a lambda expression

 Rule of thumb: Less tokens⇒ More declarative

22



So, what next?

• Avoid loops, use Streams
– Almost any loop can be replaced with a Stream call

– The new version of IntelliJ does this automagically

• Avoid nulls, use Optionals

– Optionals are clearer, safer, compose better, and support higher level functions

– Only use nulls when dealing 
with legacy APIs

• Prefer declarative to imperative
code whenever possible

23



Appendix What else is new in Java 8?

• New Date and Time APIs

– Everything is now immutable, and immutable is good

• Support for unsigned arithmetic (no uint type)

• Embedding JavaScript code in Java 

• Better integration with JavaFX

– Java library for developing rich client applications

– Alternative to swing, which is no longer in active development

Author: Gal Lalouche - Technion 2017© 24

ScriptEngine engine = new ScriptEngineManager().getEngineByName("nashorn"); 

engine.eval("console.log('Hello World!');"); 

http://www.oracle.com/technetwork/articles/java/jf14-date-time-2125367.html
https://blogs.oracle.com/darcy/entry/unsigned_api
http://www.oracle.com/technetwork/articles/java/jf14-nashorn-2126515.html

