
Data Structures and 
Organization
(p.7 – Graphs)

Yevhen Berkunskyi,

Computer Science dept., NUoS
eugeny.berkunsky@gmail.com 

http://www.berkut.mk.ua 



Graphs

• Figure A shows a simplified map of the freeways in the vicinity 
of San Jose, California. 

• Figure B shows a graph that models these freeways.



Introduction to Graphs

• In the graph, circles represent freeway interchanges, and 
straight lines connecting the circles represent freeway 
segments. 

• The circles are vertices, and the lines are edges.
• The vertices are usually labeled in some way—often, as shown 

here, with letters of the alphabet. Each edge is bounded by the 
two vertices at its ends



Graphs

Adjacency

• Two vertices are said to be adjacent to one another if they are connected 

by a single edge. 

• Thus, in Figure, vertices I and G are adjacent, but vertices I and F are not.

• The vertices adjacent to a given vertex are sometimes said to be its 

neighbors. For example, the neighbors of G are I, H, and F.

Paths

• A path is a sequence of edges. Figure shows a path from vertex B to vertex 

J that passes through vertices A and E. 

• We can call this path BAEJ. There can be more than one path between two 

vertices; another path from B to J is BCDJ.



Graphs

Connected Graphs
A graph is said to be connected if there is at least one path from every vertex 
to every other vertex, as in the graph in Figure A. 
However, if “You can’t get there from here” (as Vermont farmers 
traditionally tell city slickers who stop to ask for directions), the graph is not 
connected, as in Figure B.

A non-connected graph consists of several connected components. In Figure 13.2b, A
and B are one connected component, and C and D are another.



Graphs

• In some graphs, edges are given a weight, a number that can 
represent the physical distance between two vertices, or the 
time it takes to get from one vertex to another, or how much 
it costs to travel from vertex to vertex (on airline routes, for 
example).

• Such graphs are called weighted graphs. 



Historical Note

• One of the first mathematicians to work with 
graphs was Leonhard Euler in the early 
eighteenth century. 

• He solved a famous problem dealing with the 
bridges in the town of Königsberg, Poland. 

• This town included an island and seven 
bridges, as shown in Figure



Historical Note



Representing a Graph in a Program

Vertices

• In a very abstract graph program you could simply 

number the vertices 0 to N-1 (where N is the number of 

vertices). You wouldn’t need any sort of variable to hold 

the vertices because their usefulness would result from 

their relationships with other vertices.

• In most situations, however, a vertex represents some 

real-world object, and the object must be described 

using data items. If a vertex represents a city in an 

airline route simulation, for example, it may need to 

store the name of the city, its altitude, its location, and 

other such information. 

• Thus, it’s usually convenient to represent a vertex by an 
object of a vertex class. 



Representing a Graph in a Program

class Vertex {

public char label; // label (e.g. ‘A’)

public boolean wasVisited;

public Vertex(char label) {

this.label = label;

wasVisited = false;

}

} 

The vertices might be placed in a list, an array or some other data structure.



Representing a Graph in a Program

Edges
• Two methods are commonly used for graphs: the adjacency matrix 

and the adjacency list. (Remember that one vertex is said to be 
adjacent to another if they’re connected by a single edge.) 

The Adjacency Matrix
• An adjacency matrix is a two-dimensional array in which the 

elements indicate whether an edge is present between two 

vertices. If a graph has N vertices, the adjacency matrix is an NxN

array. 



Adjacency Matrix



Representing a Graph in a Program

The Adjacency List
• The other way to represent edges is with an adjacency list. 

The list in adjacency list refers to a linked list

• Actually, an adjacency list is an array of lists 

(or sometimes a list of lists). 

• Each individual list shows what vertices a given vertex is 

adjacent to. 



Searches

• Imagine trying to find out how many towns in the United States 

can be reached by passenger train from Kansas City (assuming 

that you don’t mind changing trains). 

• Some towns could be reached. Others couldn’t be reached 

because they didn’t have passenger rail service.

• Possibly others couldn’t be reached, even though they had rail 

service, because their rail system (the narrow-gauge Hayfork-

Hicksville RR, for example) didn’t connect with the standard-

gauge line you started on or any of the lines that could be 

reached from your line.



Searches

• Imagine that you’re designing a printed circuit board, like the 

ones inside your computer. Various components — mostly 

integrated circuits (ICs) — are placed on the board, with pins 

from the ICs protruding through holes in the board. 

• The ICs are soldered in place, and their pins are electrically 

connected to other pins by traces — thin metal lines applied to 

the surface of the circuit board, as shown in Figure



Searches

Assume that you’ve created such a graph. Now you need an 
algorithm that provides a systematic way to start at a specified 
vertex and then move along edges to other vertices in such a 
way that, when it’s done, you are guaranteed that it has visited 
every vertex that’s connected to the starting vertex. 

• There are two common approaches to searching a graph: 
depth-first search (DFS) and breadth-first search (BFS). 
Both will eventually reach all connected vertices. 

• The depth-first search is implemented with a stack, whereas 
the breadth-first search is implemented with a queue. 

• These mechanisms result, as we’ll see, in the graph being 
searched in different ways.



Depth-First Search

The depth-first search uses a stack to remember where it should go when it 
reaches a dead end. 



Depth-First Search



Breadth-First Search

• In the breadth-first search the algorithm likes to stay as close as 

possible to the starting point.

• It visits all the vertices adjacent to the starting vertex, and only 

then goes further afield. This kind of search is implemented 

using a queue instead of a stack.



Breadth-First Search



Minimum Spanning Trees

• Suppose that you’ve designed a printed circuit board like the one shown 
in Figure, and you want to be sure you’ve used the minimum number of 
traces. That is, you don’t want any extra connections between pins; such 
extra connections would take up extra room and make other circuits 
more difficult to lay out.

• It would be nice to have an algorithm that, for any connected set of pins 
and traces (vertices and edges, in graph terminology), would remove any 
extra traces. The result would be a graph with the minimum number of 
edges necessary to connect the vertices. 



Topological Sorting 
with Directed Graphs

An Example: Course Prerequisites
• In high school and college, students find (sometimes to their dismay) that 

they can’t take just any course they want. 

• Some courses have prerequisites — other courses that must be taken first. 

Indeed, taking certain courses may be a prerequisite to obtaining a degree 

in a certain field. 

• Figure shows a somewhat fanciful arrangement of courses necessary for 

graduating with a degree in mathematics 



Directed Graphs

• Previous Figure shows, a graph can represent this sort of arrangement. 
However, the graph needs a feature we haven’t seen before: The edges 
need to have a direction.

• When this is the case, the graph is called a directed graph. In a directed 
graph you can proceed only one way along an edge. The arrows in the 
figure show the direction of the edges.

To be continued…



Example



Questions?



Data Structures and 
Organization
(p.7 – Graphs)

Yevhen Berkunskyi, 

Computer Science dept., NUoS
eugeny.berkunsky@gmail.com 

http://www.berkut.mk.ua 


