
Data Structures and
Organization

(p.6 – HashTables)

Yevhen Berkunskyi,

Computer Science dept., NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Hash Tables

• A hash table is a data structure that offers very fast
insertion and searching.

• When you first hear about them, hash tables sound
almost too good to be true. No matter how many
data items there are, insertion and searching (and
sometimes deletion) can take close to constant time:
O(1) in big O notation.

• In practice this is just a few machine instructions.

Introduction to Hashing

• Suppose you’re writing a program to access employee records
for a small company with, say, 1000 employees.

• Each employee record requires 1,000 bytes of storage.
• Thus, you can store the entire database in only 1 megabyte,

which will easily fit in your computer’s memory.
• The company’s personnel director has specified that she wants

the fastest possible access to any individual record. Also, every
employee has been given a number from 1 (for the founder) to
1,000 (for the most recently hired worker).

• These employee numbers can be used as keys to access the
records; in fact access by other keys is deemed unnecessary

Hashing

A Dictionary

• Let’s say we want to store a 50,000-word English-language
dictionary in main memory.

• You would like every word to occupy its own cell in a 50,000-
cell array, so you can access the word using an index number.
This will make access very fast.

• But what’s the relationship of these index numbers to the
words? Given the word morphosis, for example, how do we
find its index number?

Converting Words to Numbers

• ASCII code runs from 0 to 255, to accommodate
letters, punctuation, and so on.

• There are really only 26 letters in English words, so
let’s devise our own code, a simpler one that can
potentially save memory space.

• Let’s say a is 1, b is 2, c is 3, and so on up to 26 for z.
• We’ll also say a blank is 0, so we have 27 characters.

Converting Words to Numbers

• Adding the Digits
A simple approach to converting a word to a number might
be to simply add the code numbers for each character. Say we
want to convert the word cats to a number.
First, we convert the characters to digits using our homemade
code:
c = 3
a = 1
t = 20
s = 19
Then we add them: 3 + 1 + 20 + 19 = 43

What is the problem?

Converting Words to Numbers

Multiplying by Powers
Say we want to convert the word cats to a number. We convert
the digits to numbers as shown earlier. Then we multiply each
number by the appropriate power of 27 and add the results:

3*273 + 1*272 + 20*271 + 19*270
Calculating the powers gives

3*19683 + 1*729 + 20*27 + 19*1
and multiplying the letter codes times the powers yields

59049 + 729 + 540 + 19
which sums to 60337

What is the problem now?

Hashing

What we need is a way to compress the huge range of numbers
we obtain from the numbers-multiplied-by-powers system into
a range that matches a reasonably sized array.

A similar expression can be used to compress the really huge
numbers that uniquely represent every English word into index
numbers that fit in our dictionary array:

arrayIndex = hugeNumber % arraySize;
This is an example of a hash function. It hashes (converts) a
number in a large range into a number in a smaller range. This
smaller range corresponds to the index numbers in an array.
An array into which data is inserted using a hash function is
called a hash table.

Collisions

• We pay a price for squeezing a large range into a small one.
There’s no longer a guarantee that two words won’t hash to
the same array index.

• This is similar to what happened when we added the letter
codes, but the situation is nowhere near as bad.

• When we added the letters, there were only 260 possible
results (for words up to 10 letters).

Solutions

1) Open Addressing 2) Separate Chaining

Open Addressing

Separate Chaining

Load Factors

• The load factor (the ratio of the number of items in a hash
table to its size) is typically different in separate chaining
than in open addressing. In separate chaining it’s normal to
put N or more items into an N cell array; thus, the load
factor can be 1 or greater.

• There’s no problem with this; some locations will simply
contain two or more items in their lists.

Example

Questions?

Data Structures and
Organization

(p.6 – HashTables)

Yevhen Berkunskyi,

Computer Science dept., NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

