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Stacks and Queues

In this lecture we’ll see three data storage 
structures:

• the Stack, 

• the Queue, and 

• the Priority Queue



A Different Kind of Structure

• Programmer’s Tools

• Restricted Access

• More Abstract



Programmer’s Tools

• Arrays are appropriate for the kind of data you might find in a 
database application. They’re typically used for personnel 
records, inventories, financial data, and so on—data that 
corresponds to real-world objects or activities. 

• The structures and algorithms we’ll see here  are more often 
used as programmer’s tools. 
• They’re primarily conceptual aids rather than full-fledged 

data storage devices. 
• Their lifetime is typically shorter than that of the database-

type structures. 
• They are created and used to carry out a particular task 

during the operation of a program; when the task is 
completed, they’re discarded.



Restricted Access

• In an array, any item can be accessed, either immediately – if  
its index number is known – or by searching through a 
sequence of cells until it’s found. 

• In the data structures in this lecture, however, access is 
restricted: Only one item can be read or removed at a given 
time (unless you cheat).

• The interface of these structures is designed to enforce this 
restricted access. Access to other items is (in theory) not 
allowed.



More Abstract

• Stacks, queues, and priority queues are more abstract entities 
than arrays and many other data storage structures. 

• They’re defined primarily by their interface: the permissible 
operations that can be carried out on them. 

• The underlying mechanism used to implement them is 
typically not visible to their user.



Stacks

• A stack allows access to only one data item: the last item 
inserted. If you remove this item, you can access the next-to-
last item inserted, and so on. This capability is useful in many 
programming situations. 



Example



Queues

• In computer science a Queue is a data structure that 
is somewhat like a stack, except that in a queue the 
first item inserted is the first to be removed (First-In-
First-Out, FIFO), while in a Stack, as we’ve seen, the 
last item inserted is the first to be removed (LIFO)



Queues

• Queues are used as a programmer’s tool as stacks 
are. 

• They’re also used to model real-world situations such 
as people waiting in line at a bank, airplanes waiting 
to take off, or data packets waiting to be transmitted 
over the Internet.



Example



Deques

• A deque is a double-ended queue. You can insert items at 
either end and delete them from either end. 

• The methods might be called insertFirst() and insertLast(), and 
removeFirst() and removeLast() .



Deques

• If you restrict yourself to insertFirst() and removeFirst() (or 
their equivalents on the last), the deque acts like a stack. 

• If you restrict yourself to insertFirst() and removeLast() (or the 
opposite pair), it acts like a queue.

• A deque provides a more versatile data structure than either a 
stack or a queue and is sometimes used in container class 
libraries to serve both purposes. 



Priority Queues

• A priority queue is a more specialized data structure 
than a stack or a queue. However, it’s a useful tool in 
a surprising number of situations. 

• Like an ordinary queue, a priority queue has a front 
and a rear, and items are removed from the front.

• However, in a priority queue, items are ordered by 
key value so that the item with the lowest key (or in 
some implementations the highest key) is always at 
the front.

• Items are inserted in the proper position to maintain 
the order.



Priority Queues

• In many situations you want access 
to the item with the lowest key 
value (which might represent the 
cheapest or shortest way to do 
something). 

• Thus, the item with the smallest 
key has the highest priority. 

• Somewhat arbitrarily, we’ll assume 
that’s the case in this discussion, 
although there are other situations 
in which the highest key has the 
highest priority



Example



Questions?
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