
Data Structures and
Organization

(p.3 – Stacks and Queues)

Yevhen Berkunskyi,

Computer Science dept., NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Stacks and Queues

In this lecture we’ll see three data storage
structures:

• the Stack,

• the Queue, and

• the Priority Queue

A Different Kind of Structure

• Programmer’s Tools

• Restricted Access

• More Abstract

Programmer’s Tools

• Arrays are appropriate for the kind of data you might find in a
database application. They’re typically used for personnel
records, inventories, financial data, and so on—data that
corresponds to real-world objects or activities.

• The structures and algorithms we’ll see here are more often
used as programmer’s tools.
• They’re primarily conceptual aids rather than full-fledged

data storage devices.
• Their lifetime is typically shorter than that of the database-

type structures.
• They are created and used to carry out a particular task

during the operation of a program; when the task is
completed, they’re discarded.

Restricted Access

• In an array, any item can be accessed, either immediately – if
its index number is known – or by searching through a
sequence of cells until it’s found.

• In the data structures in this lecture, however, access is
restricted: Only one item can be read or removed at a given
time (unless you cheat).

• The interface of these structures is designed to enforce this
restricted access. Access to other items is (in theory) not
allowed.

More Abstract

• Stacks, queues, and priority queues are more abstract entities
than arrays and many other data storage structures.

• They’re defined primarily by their interface: the permissible
operations that can be carried out on them.

• The underlying mechanism used to implement them is
typically not visible to their user.

Stacks

• A stack allows access to only one data item: the last item
inserted. If you remove this item, you can access the next-to-
last item inserted, and so on. This capability is useful in many
programming situations.

Example

Queues

• In computer science a Queue is a data structure that
is somewhat like a stack, except that in a queue the
first item inserted is the first to be removed (First-In-
First-Out, FIFO), while in a Stack, as we’ve seen, the
last item inserted is the first to be removed (LIFO)

Queues

• Queues are used as a programmer’s tool as stacks
are.

• They’re also used to model real-world situations such
as people waiting in line at a bank, airplanes waiting
to take off, or data packets waiting to be transmitted
over the Internet.

Example

Deques

• A deque is a double-ended queue. You can insert items at
either end and delete them from either end.

• The methods might be called insertFirst() and insertLast(), and
removeFirst() and removeLast() .

Deques

• If you restrict yourself to insertFirst() and removeFirst() (or
their equivalents on the last), the deque acts like a stack.

• If you restrict yourself to insertFirst() and removeLast() (or the
opposite pair), it acts like a queue.

• A deque provides a more versatile data structure than either a
stack or a queue and is sometimes used in container class
libraries to serve both purposes.

Priority Queues

• A priority queue is a more specialized data structure
than a stack or a queue. However, it’s a useful tool in
a surprising number of situations.

• Like an ordinary queue, a priority queue has a front
and a rear, and items are removed from the front.

• However, in a priority queue, items are ordered by
key value so that the item with the lowest key (or in
some implementations the highest key) is always at
the front.

• Items are inserted in the proper position to maintain
the order.

Priority Queues

• In many situations you want access
to the item with the lowest key
value (which might represent the
cheapest or shortest way to do
something).

• Thus, the item with the smallest
key has the highest priority.

• Somewhat arbitrarily, we’ll assume
that’s the case in this discussion,
although there are other situations
in which the highest key has the
highest priority

Example

Questions?

Data Structures and
Organization

(p.3 – Stacks and Queues)

Yevhen Berkunskyi,

Computer Science dept., NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

