
Data Structures and
Organization

(p.2 – Time complexity / Arrays)

Yevhen Berkunskyi,
NUoS

eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua

How well will it scale?

• From an architectural perspective, scalability
refers to how flexible your app is as your features
are increasing.

• From a database perspective, scalability is about
the capability of a database to handle an
increasing amount of data and users.

• For a web server, being scalable can mean that it
can serve a high number of users accessing it
at the same time.

How well will it scale?

• For algorithms, scalability refers to how the
algorithm performs in terms of execution time
and memory usage as the input size increases.

• With a small amount of data, any algorithm
may still feel fast.

• However, as the amount of data increases, an
expensive algorithm can become crippling.

Time complexity.
Big O notation

• Time complexity is a measure of the time
required to run an algorithm as the input size
increases.

• In this lecture, we’ll go through the most
common time complexities and learn how to
identify them.

Constant time

• A constant time algorithm is one that has the
same running time regardless of the
size of the input. Consider the following:

fun checkFirst(names: List<String>) {
 if (names.firstOrNull() != null) {
 println(names.first())
 } else {
 println("no names")
 }
}

The size of namesdoes not affect the running time of this
function. Whether nameshas 10 items or 10 million items, this
function only checks the first element of the list.

Constant time

• Here’s a visualization of this time complexity
in a plot between time versus data size:

Time

Data

As input data increases, the amount of time the algorithm takes does not change.

The Big O notation for constant time is O(1)

Linear Time

• Consider the following snippet of code:
fun printNames(names: List<String>) {
 for (name in names) {
 println(name)
 }
}

• This function prints all the names in a String list.
• As the input list increases in size, the number of iterations is

increased by the same amount.

Linear Time

• This behavior is known as linear time
complexity:

Time

Data

The Big O notation for linear time is O(n)

Note about complexity

• Note: What about a function that has two loops
over all of the data and a calls six different O(1)
methods? Is it O(2n + 6) ?

• Time complexity only gives a high-level shape of
the performance. Loops that happen a set
number of times are not part of the calculation.

• All constants are dropped in the final Big O
notation. In other words, O(2n + 6) is surprisingly
equal to O(n)

Quadratic time

• More commonly referred to as n squared, this
time complexity refers to an algorithm that takes
time proportional to the square of the input size.

• Consider the following code:

fun multiplicationBoard(size: Int) {
 for (number in 1..size) {
 print(" | ")
 for (otherNumber in 1..size) {
 print("$number x $otherNumber = ${number * otherNumber} |")
 }
 println()
 }
}

Quadratic time

• If you call this function using a small number, like
2, you’ll get the following output:

| 1 x 1 = 1 | 1 x 2 = 2 |
| 2 x 1 = 2 | 2 x 2 = 4 |

• If the input is 10, it’ll print the full multiplication
board of 10 × 10. That’s 100 print statements.

• If you increase the input size by one, it’ll print
the product of 11 numbers with 11 numbers,
resulting in 121 print statements.

Quadratic time

Time

Data

• As the size of the input data increases, the
amount of time it takes for the algorithm to run
increases drastically.

• Thus, n squared algorithms don’t perform well
at scale. The Big O notation for quadratic time is O(n^2).

Note

• No matter how inefficiently a linear time O(n)
algorithm is written, for a sufficiently large n, the
linear time algorithm will always execute faster
than a super optimized quadratic algorithm.

• Companies put millions of dollars of R&D into
reducing the slope of those constants that Big O
notation ignores.

• For example, a GPU optimized version of an
algorithm might run 100× faster than the naïve
CPU version while remaining O(n)

Arrays

What about arrays?

What arrays are?

• The array is the most commonly used data
storage structure; it’s built into most
programming languages.

• An array is a data structure represented as a
group of cells of the same type, with one
common name.

• Arrays are used to process a large number of
similar data.

Class as Data Structure Unit

• Suppose you’re coaching kids-league basketball, and
you want to keep track of which players are present at
the practice field

• What you need is an attendance-monitoring program
for your laptop—a program that maintains a database
of the players who have shown up for practice.

• You can use a simple data structure to hold this data.

What kind of data we’ll use for player?

Let it be Player class:

The Player class

public class Player {
private int num;
private String name;

public Player(int num, String name) {

this.num = num;
this.name = name;

}

@Override
public String toString() {

return "{" + num + ", " + name + "}";
 }

...
}

data class Player(var num:Int, var name:String)

Actions

• Insert a player into the data structure when the
player arrives at the field

• Check to see whether a particular player is present,
by searching for the player’s number in the structure

• Delete a player from the data structure when that
player goes home

These three operations: insertion, searching, and
deletion — will be the fundamental ones in most of
the data storage structures

Example

Ordered Array

• Imagine an array in which the data items are arranged
in order of ascending key values—that is, with the
smallest value at index 0, and each cell holding a value
larger than the cell below.

• Such an array is called an ordered array.

• When we insert an item into this array, the correct
location must be found for the insertion: just above a
smaller value and just below a larger one.

• Then all the larger values must be moved up to make
room.

Binary Searching

• Why would we want to arrange data in order?

• One advantage is that we can speed up search
times dramatically using a binary search.

The Guess-a-Number Game

• Binary search uses the same approach you did as
a kid (if you were smart) to guess a number in the
well-known children’s guessing game.

• In this game, a friend asks you to guess a number
she’s thinking of between 1 and 100.

Example

Logarithmic time

• The algorithm first checks the middle value to see
how it compares with the desired value.

• If the middle value is bigger than the desired value,
the algorithm won’t bother looking at the values on
the right half of the list; since the list is sorted, values
to the right of the middle value can only get bigger.

• In the other case, if the middle value is smaller than
the desired value, the algorithm won’t look at the
left side of the list.

• This optimization cuts the number of comparisons by half

Logarithmic time

Time

Data

• As input data increases, the time it takes to execute
the algorithm increases at a slower rate. This can be
explained by considering the impact of halving the
number of comparisons you need to do.

The Big O notation for logarithmic time complexity is O(log n)

Simple Sorting

The three algorithms in this presentation all involve two
steps, executed over and over until the data is sorted:

1. Compare two items.

2. Swap two items, or copy one item.

However, each algorithm handles the details in a different
way

• Bubble Sort

• Selection Sort

• Insertion Sort

Bubble Sort

The bubble sort is notoriously slow, but it’s
conceptually the simplest of the sorting
algorithms and for that reason is a good
beginning for our exploration of sorting
techniques.

Here are the rules you’re following:
1. Compare two elements.
2. If the one on the left is greater, swap them.
3. Move one position right.

Bubble Sort

1. Compare two elements.

2. If the one on the left is
greater,

swap them.

3. Move one position right.
Efficiency of the Bubble Sort

(N–1) + (N–2) + (N–3) + ... + 1 = N*(N–1)/2

Bubble Sort

Selection Sort

A Brief Description
What’s involved in the selection sort is making a pass
through all the elements and picking (or selecting,
hence the name of the sort) the smallest one. This
smallest element is then swapped with the element on
the left end of the line, at position 0.

Now the leftmost element is sorted and won’t need to
be moved again.

Notice that in this algorithm the sorted elements
accumulate on the left (lower indices), whereas in the
bubble sort they accumulated on the right.

Selection Sort

Efficiency of the Selection
Sort

The selection sort performs
the same number of
comparisons as the bubble
sort: N*(N-1)/2

Selection Sort

Insertion Sort

• At this point there’s an imaginary
marker somewhere in the middle
of the line.

• The elements to the left of this
marker are partially sorted. This
means that they are sorted among
themselves; each one is greater
than the element from left.

• However, the elements aren’t
necessarily in their final positions
because they may still need to be
moved when previously unsorted
elements are inserted between

them.

Insertion Sort

QuickSort

Quicksort is an efficient sorting algorithm that selects a
pivot element from the array and partitions the other
elements into two smaller slices or windows, according
to whether they are less than or greater than the pivot
element.
• Subsequently, the two newly created slices are sorted

recursively. The base cases of the recursion are array
slices of size zero or one, which are already sorted.

• It’s important to note that this sorting algorithm has a
time complexity of O(n log n) on average and O(n2) for
the worst case. However, the worst-case scenario is rare,
and the algorithm performs well in practice.

QuickSort

fun partitionHoare(arr: IntArray, low: Int, high: Int): Int {
val pivot = arr[low]
var start = low - 1
var end = high + 1
while (true) {

do {
start++

} while (arr[start] < pivot)
do {

end--
} while (arr[end] > pivot)
if (start >= end) {

return end
}
val temp = arr[start]
arr[start] = arr[end]
arr[end] = temp

}
}

QuickSort

fun quickSortHoare(
 arr: IntArray,
 low: Int = 0,
 high: Int = arr.size - 1) {

if (low < high) {
val pivot = partitionHoare(arr, low, high)
quickSortHoare(arr, low, pivot)
quickSortHoare(arr, pivot + 1, high)

}
}

QuickSort

Quasilinear time

• Another common time complexity you’ll
encounter is quasilinear time O(n log n).

• Algorithms in this category perform worse
than linear time but dramatically better than
quadratic time. They are among the most
common algorithms you’ll deal with.

TimSort

Questions?

Data Structures and
Organization

(p.2 – Time complexity / Arrays)

Yevhen Berkunskyi,
NUoS

eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua

	Slide 1: Data Structures and Organization (p.2 – Time complexity / Arrays)
	Slide 2: How well will it scale?
	Slide 3: How well will it scale?
	Slide 4: Time complexity. Big O notation
	Slide 5: Constant time
	Slide 6: Constant time
	Slide 7: Linear Time
	Slide 8: Linear Time
	Slide 9: Note about complexity
	Slide 10: Quadratic time
	Slide 11: Quadratic time
	Slide 12: Quadratic time
	Slide 13: Note
	Slide 14: Arrays
	Slide 15: What arrays are?
	Slide 16: Class as Data Structure Unit
	Slide 17: The Player class
	Slide 18: Actions
	Slide 19: Example
	Slide 20: Ordered Array
	Slide 21: Binary Searching
	Slide 22: Example
	Slide 23: Logarithmic time
	Slide 24: Logarithmic time
	Slide 25: Simple Sorting
	Slide 26: Bubble Sort
	Slide 27: Bubble Sort
	Slide 28: Bubble Sort
	Slide 29: Selection Sort
	Slide 30: Selection Sort
	Slide 31: Selection Sort
	Slide 32: Insertion Sort
	Slide 33: Insertion Sort
	Slide 34: QuickSort
	Slide 35: QuickSort
	Slide 36: QuickSort
	Slide 37: QuickSort
	Slide 38: Quasilinear time
	Slide 39: TimSort
	Slide 40: Questions?
	Slide 41: Data Structures and Organization (p.2 – Time complexity / Arrays)

