
Data Structures and
Organization

(p.2 – Arrays)

Yevhen Berkunskyi,

Computer Science dept., NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

What arrays are?

• The array is the most commonly used data storage structure;
it’s built into most programming languages.

• An array is a data structure represented as a group of cells of
the same type, with one common name.

• Arrays are used to process a large number of similar data.

Class as Data Structure Unit

• Suppose you’re coaching kids-league basketball, and you want
to keep track of which players are present at the practice field

• What you need is an attendance-monitoring program for your
laptop—a program that maintains a database of the players
who have shown up for practice.

• You can use a simple data structure to hold this data.

What kind of data we’ll use for player?

Let it be Player class:

The Player class

public class Player {
private int num;
private String name;

public Player(int num, String name) {
this.num = num;
this.name = name;

}

@Override
public String toString() {

return "{" + num + ", " + name + "}";
}

...
}

Actions

• Insert a player into the data structure when the
player arrives at the field

• Check to see whether a particular player is
present, by searching for the player’s number in
the structure

• Delete a player from the data structure when that
player goes home

These three operations: insertion, searching, and deletion —
will be the fundamental ones in most of the data storage
structures

Example

Ordered Array

• Imagine an array in which the data items are arranged in order
of ascending key values—that is, with the smallest value at
index 0, and each cell holding a value larger than the cell
below.

• Such an array is called an ordered array.

• When we insert an item into this array, the correct location
must be found for the insertion: just above a smaller value and
just below a larger one.

• Then all the larger values must be moved up to make room.

Binary Searching

• Why would we want to arrange data in order?

• One advantage is that we can speed up search times
dramatically using a binary search.

The Guess-a-Number Game

• Binary search uses the same approach you did as a kid (if you
were smart) to guess a number in the well-known children’s
guessing game.

• In this game, a friend asks you to guess a number she’s
thinking of between 1 and 100.

Binary Searching

 Player findBinary(Player[] a, int num) {

 int lo = 0;

 int hi = a.length-1;

 while (true) {

 int mid = (lo + hi) / 2;

 if (a[mid].getNum() == num) {

 return a[mid];

 }

 if (lo>hi) {

 return null ; // not found

 }

 if (a[mid].getNum() < num) {

 lo = mid+1;

 } else {

 hi = mid-1;

 }

 }

 }

Example

Simple Sorting

The three algorithms in this presentation all involve two steps,
executed over and over until the data is sorted:

1. Compare two items.

2. Swap two items, or copy one item.

However, each algorithm handles the details in a different way

• Bubble Sort

• Selection Sort

• Insertion Sort

Bubble Sort

The bubble sort is notoriously slow, but it’s conceptually the
simplest of the sorting algorithms and for that reason is a good
beginning for our exploration of sorting techniques.

Here are the rules you’re following:
1. Compare two elements.
2. If the one on the left is greater, swap them.
3. Move one position right.

Bubble Sort

1. Compare two elements.

2. If the one on the left is greater,
swap them.

3. Move one position right.

Efficiency of the Bubble Sort

(N–1) + (N–2) + (N–3) + ... + 1 = N*(N–1)/2

Selection Sort

A Brief Description
What’s involved in the selection sort is making a pass through all
the elements and picking (or selecting, hence the name of the
sort) the smallest one. This smallest element is then swapped
with the element on the left end of the line, at position 0.

Now the leftmost element is sorted and won’t need to be
moved again.

Notice that in this algorithm the sorted elements accumulate on
the left (lower indices), whereas in the bubble sort they
accumulated on the right.

Selection Sort

Efficiency of the Selection Sort

The selection sort performs the same
number of comparisons as the
bubble sort: N*(N-1)/2

Insertion Sort

• At this point there’s an imaginary
marker somewhere in the middle
of the line.

• The elements to the left of this
marker are partially sorted. This
means that they are sorted among
themselves; each one is greater
than the element from left.

• However, the elements aren’t
necessarily in their final positions
because they may still need to be
moved when previously unsorted
elements are inserted between
them.

Questions?

Data Structures and
Organization

(p.2 – Arrays)

Yevhen Berkunskyi,

Computer Science dept., NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

