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How well will it scale? 

• From an architectural perspective, scalability 
refers to how flexible your app is as your features 
are increasing. 

• From a database perspective, scalability is about 
the capability of a database to handle an 
increasing amount of data and users. 

• For a web server, being scalable can mean that it 
can serve a high number of users accessing it
at the same time. 



How well will it scale? 

• For algorithms, scalability refers to how the 
algorithm performs in terms of execution time 
and memory usage as the input size increases.

• With a small amount of data, any algorithm 
may still feel fast. 

• However, as the amount of data increases, an 
expensive algorithm can become crippling.



Time complexity. 
Big O notation

• Time complexity is a measure of the time 
required to run an algorithm as the input size 
increases. 

• In this lecture, we’ll go through the most 
common time complexities and learn how to 
identify them.



Constant time

• A constant time algorithm is one that has the 
same running time regardless of the
size of the input. Consider the following: 

fun checkFirst(names: List<String>) {
    if (names.firstOrNull() != null) {
        println(names.first())
    } else {
        println("no names")
    }
}

The size of namesdoes not affect the running time of this 
function. Whether nameshas 10 items or 10 million items, this 
function only checks the first element of the list. 



Constant time

• Here’s a visualization of this time complexity 
in a plot between time versus data size:
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As input data increases, the amount of time the algorithm takes does not change.

The Big O notation for constant time is O(1)



Linear Time

• Consider the following snippet of code:
fun printNames(names: List<String>) {
    for (name in names) {
        println(name)
    }
}

• This function prints all the names in a String list. 
• As the input list increases in size, the number of iterations is 

increased by the same amount.



Linear Time

• This behavior is known as linear time 
complexity: 
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The Big O notation for linear time is O(n)



Note about complexity

• Note: What about a function that has two loops 
over all of the data and a calls six different O(1) 
methods? Is it O(2n + 6) ?

• Time complexity only gives a high-level shape of 
the performance. Loops that happen a set 
number of times are not part of the calculation. 

• All constants are dropped in the final Big O 
notation. In other words, O(2n + 6) is surprisingly 
equal to O(n) 



Quadratic time

• More commonly referred to as n squared, this 
time complexity refers to an algorithm that takes 
time proportional to the square of the input size.

• Consider the following code:

fun multiplicationBoard(size: Int) {
  for (number in 1..size) {
    print(" | ")
    for (otherNumber in 1..size) {
      print("$number x $otherNumber = ${number * otherNumber} |")
    }
    println()
  }
}



Quadratic time

• If you call this function using a small number, like 
2, you’ll get the following output:

| 1 x 1 = 1 | 1 x 2 = 2 |
| 2 x 1 = 2 | 2 x 2 = 4 |

• If the input is 10, it’ll print the full multiplication 
board of 10 × 10. That’s 100 print statements. 

• If you increase the input size by one, it’ll print 
the product of 11 numbers with 11 numbers, 
resulting in 121 print statements. 



Quadratic time

Time
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• As the size of the input data increases, the 
amount of time it takes for the algorithm to run 
increases drastically. 

• Thus, n squared algorithms don’t perform well 
at scale. The Big O notation for quadratic time is  O(n^2).



Note

• No matter how inefficiently a linear time O(n) 
algorithm is written, for a sufficiently large n, the 
linear time algorithm will always execute faster 
than a super optimized quadratic algorithm.

• Companies put millions of dollars of R&D into 
reducing the slope of those constants that Big O 
notation ignores. 

• For example, a GPU optimized version of an 
algorithm might run 100× faster than the naïve 
CPU version while remaining O(n) 



Arrays

What about arrays?



What arrays are?

• The array is the most commonly used data 
storage structure; it’s built into most 
programming languages.

• An array is a data structure represented as a 
group of cells of the same type, with one 
common name.

• Arrays are used to process a large number of 
similar data.



Class as Data Structure Unit

• Suppose you’re coaching kids-league basketball, and 
you want to keep track of which players are present at 
the practice field

• What you need is an attendance-monitoring program 
for your laptop—a program that maintains a database 
of the players who have shown up for practice. 

• You can use a simple data structure to hold this data. 

What kind of data we’ll use for player?

Let it be Player class:



The Player class

public class Player { 
private int num; 
private String name; 

 
public Player(int num, String name) { 

this.num = num; 
this.name = name; 

} 

@Override 
public String toString() { 

return "{" + num + ", " + name + "}"; 
    }

... 
} 

data class Player(var num:Int, var name:String)



Actions

• Insert a player into the data structure when the 
player arrives at the field

• Check to see whether a particular player is present, 
by searching for the player’s number in the structure

• Delete a player from the data structure when that 
player goes home

These three operations: insertion, searching, and 
deletion — will be the fundamental ones in most of 
the data storage structures



Example



Ordered Array 

• Imagine an array in which the data items are arranged 
in order of ascending key values—that is, with the 
smallest value at index 0, and each cell holding a value
larger than the cell below. 

• Such an array is called an ordered array.

• When we insert an item into this array, the correct 
location must be found for the insertion: just above a 
smaller value and just below a larger one. 

• Then all the larger values must be moved up to make 
room.



Binary Searching 

• Why would we want to arrange data in order? 

• One advantage is that we can speed up search 
times dramatically using a binary search.

The Guess-a-Number Game

• Binary search uses the same approach you did as 
a kid (if you were smart) to guess a number in the 
well-known children’s guessing game. 

• In this game, a friend asks you to guess a number 
she’s thinking of between 1 and 100. 



Example



Logarithmic time

• The algorithm first checks the middle value to see 
how it compares with the desired value. 

• If the middle value is bigger than the desired value, 
the algorithm won’t bother looking at the values on 
the right half of the list; since the list is sorted, values 
to the right of the middle value can only get bigger.

• In the other case, if the middle value is smaller than 
the desired value, the algorithm won’t look at the 
left side of the list. 

• This optimization cuts the number of comparisons by half 



Logarithmic time
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• As input data increases, the time it takes to execute 
the algorithm increases at a slower rate. This can be 
explained by considering the impact of halving the 
number of comparisons you need to do.

The Big O notation for logarithmic time complexity is O(log n)



Simple Sorting 

The three algorithms in this presentation all involve two 
steps, executed over and over until the data is sorted:

1. Compare two items.

2. Swap two items, or copy one item.

However, each algorithm handles the details in a different 
way

• Bubble Sort

• Selection Sort

• Insertion Sort



Bubble Sort

The bubble sort is notoriously slow, but it’s 
conceptually the simplest of the sorting 
algorithms and for that reason is a good 
beginning for our exploration of sorting 
techniques.

Here are the rules you’re following:
1. Compare two elements.
2. If the one on the left is greater, swap them.
3. Move one position right.



Bubble Sort

1. Compare two elements.

2. If the one on the left is 
greater, 

swap them.

3. Move one position right.
Efficiency of the Bubble Sort

(N–1) + (N–2) + (N–3) + ... + 1 = N*(N–1)/2



Bubble Sort



Selection Sort

A Brief Description
What’s involved in the selection sort is making a pass 
through all the elements and picking (or selecting, 
hence the name of the sort) the smallest one. This 
smallest element is then swapped with the element on 
the left end of the line, at position 0. 

Now the leftmost element is sorted and won’t need to 
be moved again. 

Notice that in this algorithm the sorted elements 
accumulate on the left (lower indices), whereas in the 
bubble sort they accumulated on the right.



Selection Sort

Efficiency of the Selection 
Sort

The selection sort performs 
the same number of 
comparisons as the bubble 
sort: N*(N-1)/2



Selection Sort



Insertion Sort

• At this point there’s an imaginary 
marker somewhere in the middle 
of the line.

• The elements to the left of this 
marker are partially sorted. This 
means that they are sorted among 
themselves; each one is greater 
than the element from left. 

• However, the elements aren’t 
necessarily in their final positions 
because they may still need to be 
moved when previously unsorted 
elements are inserted between 

them.



Insertion Sort



QuickSort

Quicksort is an efficient sorting algorithm that selects a 
pivot element from the array and partitions the other 
elements into two smaller slices or windows, according 
to whether they are less than or greater than the pivot 
element.
• Subsequently, the two newly created slices are sorted 

recursively. The base cases of the recursion are array 
slices of size zero or one, which are already sorted.

• It’s important to note that this sorting algorithm has a 
time complexity of O(n log n) on average and O(n2) for 
the worst case. However, the worst-case scenario is rare, 
and the algorithm performs well in practice.



QuickSort

fun partitionHoare(arr: IntArray, low: Int, high: Int): Int {
val pivot = arr[low]
var start = low - 1
var end = high + 1
while (true) {

do {
start++

} while (arr[start] < pivot)
do {

end--
} while (arr[end] > pivot)
if (start >= end) {

return end
}
val temp = arr[start]
arr[start] = arr[end]
arr[end] = temp

}
}



QuickSort

fun quickSortHoare(
    arr: IntArray, 
    low: Int = 0, 
    high: Int = arr.size - 1) {

if (low < high) {
val pivot = partitionHoare(arr, low, high)
quickSortHoare(arr, low, pivot)
quickSortHoare(arr, pivot + 1, high)

}
}



QuickSort



Quasilinear time

• Another common time complexity you’ll 
encounter is quasilinear time O(n log n). 

• Algorithms in this category perform worse 
than linear time but dramatically better than
quadratic time. They are among the most 
common algorithms you’ll deal with. 



TimSort



Questions?
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