
Object-Oriented
Programming

in the Java language

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Part 9. Multitasking. Threads

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

Multitasking

Multitasking allows several activities to occur
concurrently on the computer. A distinction is usually
made between:

• Process-based multitasking

• Thread-based multitasking

Multitasking

Some advantages of thread-based multitasking as
compared to process-based multitasking are:

• threads share the same address space

• context switching between threads is usually less
expensive than between processes

• the cost of communication between threads is
relatively low

Overview of Threads

• Every thread in Java is created and controlled by a unique
object of the java.lang.Thread class.

• Often the thread and its associated Thread object are thought
of as being synonymous.

Threads make the runtime environment asynchronous, allowing
different tasks to be performed concurrently.

Using this powerful paradigm in Java centers around
understanding the following aspects of multithreaded
programming:

• creating threads and providing the code that gets executed by
a thread

• accessing common data and code through synchronization

• transitioning between thread states

The Main Thread

• When a standalone application is run, a user thread is

automatically created to execute the main() method of the

application. This thread is called the main thread.

• If no other user threads are spawned, the program terminates

when the main() method finishes executing.

The Main Thread

All other threads, called child threads, are spawned from the
main thread, inheriting its user-thread status. The main() method
can then finish, but the program will keep running until all user
threads have completed.

• Calling the setDaemon(boolean) method in the Thread class
marks the status of the thread as either daemon or user, but
this must be done before the thread is started.

The Main Thread

When a GUI application is started, a special thread is
automatically created to monitor the user–GUI interaction.

This user thread keeps the program running, allowing interaction
between the user and the GUI, even though the main thread
might have completed after the main() method finished
executing.

Thread Creation

A thread in Java is represented by an object of the Thread class.
Implementing threads is achieved in one of two ways:

• implementing the java.lang.Runnable interface

• extending the java.lang.Thread class

The Runnable interface has the following specification,
comprising one abstract method declaration:

public interface Runnable {
void run();

}

Implementing
the Runnable Interface

The procedure for creating threads based on the Runnable
interface is as follows:

1. A class implements the Runnable interface, providing the
run() method that will be executed by the thread. An object
of this class is a Runnable object.

2. An object of the Thread class is created by passing a
Runnable object as an argument in the Thread constructor
call. The Thread object now has a Runnable object that
implements the run() method.

3. The start() method is invoked on the Thread object created in
the previous step. The start() method returns immediately
after a thread has been spawned. In other words, the call to
the start() method is asynchronous.

Implementing
the Runnable Interface

Important constructors and methods
of java.lang.Thread class

Thread(Runnable target)

Thread(Runnable target, String threadName)

The argument target is the object whose run() method will be
executed when the thread is started. The argument threadName
can be specified to give an explicit name for the thread, rather
than an automatically generated one. A thread’s name can be
retrieved by calling the getName() method.
static Thread currentThread()

This method returns a reference to the Thread object of the
currently executing thread.
final String getName()

final void setName(String name)

The first method returns the name of the thread. The second
one sets the thread’s name to the specified argument.

Important constructors and methods
of java.lang.Thread class

void run()
The Thread class implements the Runnable interface by providing an implementation of
the run() method. This implementation in the Thread class does nothing and returns.
Subclasses of the Thread class should override this method. If the current thread is
created using a separate Runnable object, the run() method of the Runnable object is
called.

final void setDaemon(boolean flag)

final boolean isDaemon()
The first method sets the status of the thread either as a daemon thread or as a user
thread, depending on whether the argument is true or false, respectively. The status
should be set before the thread is started. The second method returns true if the thread
is a daemon thread, otherwise, false.

void start()
This method spawns a new thread, i.e., the new thread will begin execution as a child
thread of the current thread. The spawning is done asynchronously as the call to this
method returns immediately. It throws an IllegalThreadStateException if the thread is
already started.

Extending the Thread Class

A class can also extend the Thread class to create a thread.
A typical procedure for doing this is as follows:
1. A class extending the Thread class overrides the run()

method from the Thread class to define the code executed
by the thread.

2. This subclass may call a Thread constructor explicitly in its
constructors to initialize the thread, using the super() call.

3. The start() method inherited from the Thread class is
invoked on the object of the class to make the thread
eligible for running.

Extending the Thread Class

Synchronization

• Threads share the same memory space, i.e., they can share
resources.

• However, there are critical situations where it is desirable that
only one thread at a time has access to a shared resource.

• A lock (also called a monitor) is used to synchronize access to
a shared resource. A lock can be associated with a shared
resource.

• Threads gain access to a shared resource by first acquiring the
lock associated with the resource. At any given time, at most
one thread can hold the lock and thereby have access to the
shared resource.

• In Java, all objects have a lock—including arrays. This means
that the lock from any Java object can be used to implement
mutual exclusion.

Synchronized Methods

• If the methods of an object should only be executed by one
thread at a time, then the declaration of all such methods
should be specified with the keyword synchronized.

• A thread wishing to execute a synchronized method must
first obtain the object’s lock (i.e., hold the lock) before it can
enter the object to execute the method. This is simply
achieved by calling the method.

• If the lock is already held by another thread, the calling
thread waits. No particular action on the part of the program
is necessary.

• A thread relinquishes the lock simply by returning from the
synchronized method, allowing the next thread waiting for
this lock to proceed.

Synchronized Methods

• While a thread is inside a synchronized method of an object,
all other threads that wish to execute this synchronized
method or any other synchronized method of the object will
have to wait.

• This restriction does not apply to the thread that already has
the lock and is executing a synchronized method of the
object. Such a method can invoke other synchronized
methods of the object without being blocked.

• The non-synchronized methods of the object can always be
called at any time by any thread.

Synchronized Blocks

Whereas execution of synchronized methods of an
object is synchronized on the lock of the object, the
synchronized block allows execution of arbitrary code to
be synchronized on the lock of an arbitrary object. The
general form of the synchronized statement is as
follows:
synchronized(<object reference expression>){

<code block>

}

Synchronized Blocks

• The <object reference expression> must evaluate to a non-null
reference value, otherwise a NullPointerException is thrown.

• The code block is usually related to the object on which the
synchronization is being done.

• This is analogous to a synchronized method, where the
execution of the method is synchronized on the lock of the
current object

Example

Questions?

Object-Oriented
Programming

in the Java language

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Part 9. Multitasking. Threads

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

