
Java 8,11,15,16
Lambda Expressions 

and Streams

1

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/


Life before Java 8

Extracting employee names

Extracting employee ages

2

public List<String> empNames(List<Employee> employees) {

List<String> e = new ArrayList<>();

for (Employee emp : employees)

e.add(emp.getName());

return e;

}

public List<Integer> empAges(List<Employee> employees) {

List<Integer> e = new ArrayList<>();

for (Employee emp : employees)

e.add(emp.getAge());

return e;

}



Life before Java 8

Extracting employee names

Extracting employee ages

3

public List<String> empNames(List<Employee> employees) {

List<String> e = new ArrayList<>();

for (Employee emp : employees)

e.add(emp.getName());

return e;

}

public List<Integer> empAges(List<Employee> employees) {

List<Integer> e = new ArrayList<>();

for (Employee emp : employees)

e.add(emp.getAge());

return e;

}

DuplicationVariation



Life before Java 8 (cont.)

4



Life before Java 8 (cont.)

5



In the Kingdom of Nouns

We removed the code duplication, but this is still very verbose…

Semantically, map is a higher level function
This means that it accepts a function as an argument (or returns a function)

Syntactically, functions do not exist as first class entities
All verbs (functions) have be accompanied by a noun (class)

http://steve-yegge.blogspot.co.il/2006/03/execution-in-kingdom-of-
nouns.html

 translation: https://ru.hexlet.io/blog/posts/javaland

Prior to Java 8, Java was the only programming language in 
popular use without anonymous functions / blocks / lambdas / 
function pointers
This is not purely a syntactic issue; Java also lacked proper support for such 

function in its collections and standard libraries

Some libraries, like Guava, attempted to fill the void

6

http://steve-yegge.blogspot.co.il/2006/03/execution-in-kingdom-of-nouns.html
https://ru.hexlet.io/blog/posts/javaland
https://github.com/google/guava


Enter Java 8!

7



Let’s take a deeper look… 

8



default Methods

9



Comparison 
to other languages / features

 So is this the same as multiple inheritance?
 Nope; more similar to Traits
 There is neither conflict resolution nor constructors, so the model is 

much simpler

So are these extension methods (a la C#)?
 No, because extension methods are actually syntactic sugar for static

decorators
 You can’t add methods to library classes (e.g., in C# you can add 

extension methods to String).

 Solutions in other languages
 Ruby – mixins
 Python/Javascript – monkey patching
 Scala – implicits / pimp my library
 Haskell – type classes

10



Higher order functions

map is a higher order function in stream

 A function that takes a function

Other higher order functions in Stream
 filter, map, flatMap, sorted, reduce, …

 Similar libraries in other languages
 LINQ in C#, itertools in Python, Enumerable in Ruby, etc.

11

List<String> empNames = employees.stream()

.map(x -> x.getName())

.collect(Collectors.toList());



Streams 

• Stream is the gateway to the "functional collections" in Java 8
Provide a uniform API (why is this important?)

• We only iterate over a stream once, even if we have two or more 
higher level functions

• This is because streams are lazily evaluated
– Until we collect (or form some other reduction), no iteration 

takes place
collect is a form of mutable reduction

i.e., it reduces to a mutable container
Other reductions include forEach and, well, reduce

• Streams also give us “free” parallelization (why is it so easy?)

12

List<String> empNames = employees.stream()

.parallel()

.map(x -> x.getName())

.collect(Collectors.toList());



Streams: Caveats

• Streams are “single serving” only!
– This code will throw an exception:

– This too:

• Avoid returning Stream from a public function, or 
keeping one as a field,
– An Iterable or Collection is usually more suitable
– Although there are some (rare) cases where it’s appropriate, 

there are usually better (monadic) types

13

Stream<Student> stream = students.stream();

Stream<String> names = stream.map(Student::getName);

Stream<Integer> ages = stream.map(Student::getAge);

Stream<String> names = students.stream.map(Student::getName);

stream.forEach(this::printStudent);

stream.forEach(this::addStudentToDatabase);



Lambdas and SAMs

 The signature for map is: 
map(Function<? super T,? extends R> mapper)

 And here is the signature for Function (default methods retracted):

 An interface which has single abstract (i.e., non-default) method (often abbreviated 
SAM) can be called a functional interface

 Lambdas are just syntactic sugar for implementing functional interfaces
 Method reference (::) and lambdas are interchangeable, where applicable
 References are considered “more elegant” (as we will see later)

 So is Java a functional language now?
 Functions aren’t first-class citizens; functions aren’t even a proper part of the Java language, just a 

standard library interface
 Although an alternative interpretation could argue that interfaces are the new functions

14

List<String> empNames = employees.stream()

.map(x -> x.getName())

.collect(Collectors.toList());

interface Function<T, R> { R apply(T t); }



Lambdas (cont.)

This design choice has a great pro: we can also use lambda with legacy API!
 Old code

 New code

We can use the convenience @FunctionalInterface annotation to tell 
the compiler that the interface should be functional (a la @Override)

Author: Gal Lalouche - Technion

2017©
15

new Thread(new Runnable() {

@Override

public void run() {

System.out.println("Kill me :[");

}

}).start();

new Thread(() -> System.out.println("PARTEH! :D|-< :D/-< :D\-<)).start();

@FunctionalInterface

interface Foo { void bar(); void bazz(); } // won’t compile



More API examples

 Assure we are not hiring anyone underage

 Find the highest paid individual in the company

 What is returned if the list is empty?

 Instead of working with null, a new type Optional<T> is 
returned

 Optional<T> can be present (i.e. not null) or empty (i.e. null)

 Has a method get() that returns T or throws an exception

16

assert employees.stream().noneMatch(x -> x.age < 18);

Optional<Employee> opt = employees.stream().maxBy((x, y) -> x.salary –

y.salary);



More API examples

 Assure we are not hiring anyone underage

 Find the highest paid individual in the company

 What is returned if the list is empty?

 Instead of working with null, a new type Optional<T> is 
returned

 Optional<T> can be present (i.e. not null) or empty (i.e. null)

 Has a method get() that returns T or throws an exception

17

assert employees.stream().noneMatch(x -> x.age < 18);

Optional<Employee> opt = employees.stream().maxBy((x, y) -> x.salary –

y.salary);

What 
is 

this?



Wait, what’s wrong with nulls?

The billion dollar mistake
nulls are incredibly dangerous!
Often unchecked until used

a “sleeper agent” that destroys the application, 
its origin is hard to trace

By returning an Optional, we are explicit in our result type
Types are better than comments!

Optional also has higher order functions

 filter will return empty if the predicate returns false

18

Optional<Employee> richest = …

Optional<Integer> ageOfRichest = 

richest.map(Employee::getAge);

richestEmployee.filter(x -> x.age >= 18);

https://en.wikipedia.org/wiki/Tony_Hoare#Apologies_and_retractions


Composing Optionals

Optionals compose using flatMap

19

// working with nulls

Student s = getStudent();

if (s == null) 

return null;

Course c = s.getCourse("Software Design");

if (c == null)

return null;

Exam e = c.getMoedA();

if (e == null)

return null;

return e.getGrade();

// but if we returned Optionals…

getStudent()

.flatMap(Student::getCourse)

.flatMap(Course::getMoedA)

.flatMap(Exam::getGrade)



A more complex example

• Get Ukrainian students with a top grade 
sorted by name in Java 7

20

List<Student> topGrades = new ArrayList<>();

Collections.sort(students, new Comparator<Student>() {

public int compare(Student student1, Student student2) {

return student1.getName().compareTo(student2.getName());

}

});

for (Student student: students) 

if ("Ukraine".equals(student.getCountry()))

if (student.getGrade() >= 90)

topGrades.add(student);



A more complex example

• Get Ukrainian students with a top grade 
sorted by name in Java 7

21

List<Student> topGrades = new ArrayList<>();

Collections.sort(students, new Comparator<Student>() {

public int compare(Student student1, Student student2) {

return student1.getName().compareTo(student2.getName());

}

});

for (Student student: students) 

if ("Ukraine".equals(student.getCountry()))

if (student.getGrade() >= 90)

topGrades.add(student);

Sorts in 
place! 

Why is this 
bad?



A more complex example

• Get Ukrainian students with a top grade 
sorted by name in Java 7

22

List<Student> topGrades = new ArrayList<>();

Collections.sort(students, new Comparator<Student>() {

public int compare(Student student1, Student student2) {

return student1.getName().compareTo(student2.getName());

}

});

for (Student student: students) 

if ("Ukraine".equals(student.getCountry()))

if (student.getGrade() >= 90)

topGrades.add(student);

Sorts in 
place! 

Why is this 
bad?

Depth of 
3!



A more complex example

• Get Ukrainian students with a top grade 
sorted by name in Java 7

• In Java 8 and later:

23

List<Student> topGrades = new ArrayList<>();

Collections.sort(students, new Comparator<Student>() {

public int compare(Student student1, Student student2) {

return student1.getName().compareTo(student2.getName());

}

});

for (Student student: students) 

if ("Ukraine".equals(student.getCountry()))

if (student.getGrade() >= 90)

topGrades.add(student);

Sorts in 
place! 

Why is this 
bad?

Depth of 
3!

List<Students> topStudents = students.stream()

.filter(x -> "Ukraine".equals(x.getCountry()))

.filter(x -> x.getGrade() >= 90)

.sorted(Comparator.comparing(Student::getName))

.collect(Collectors.toList());



Other cool tricks

Sum of all salaries in the company with "map-reduce“

 Count the number of employees by rank

 Streams compose using flatMap too!

24

employees.stream()

.mapToInt(Employee::getSalary)// note the mapToInt... why?

.reduce(0, Integer::sum) 

// could also be done with Lambdas, or simply .sum()

Map<Rank, Long> countByRank = 

employees.stream().collectors(

Collectors.groupingBy(Employee::getRank, 

Collectors.counting());

List<Student> allIsraeliStudents = universities.stream()

.flatMap(u -> u.getFaculties().stream())

.flatMap(f -> f.getStudents().stream())

.collect(Collectors.toList());



Declarative versus 
Imperative programming

Streams and Optionals are an example of moving 
from imperative code to declarative code

In imperative code we write the exact, low level steps:

Create a new list object

Iterate over the original list
For every entry, apply some function f on it

Add the result of f in the new list

Return the new list

In declarative programming, 
we write a higher level description:
map all elements in the list using some function f

collect to a List



Declarative versus Imperative (Cont.)

Declarative code is shorter, more precise and explicit, 
more readable, and less error-prone
You can do pretty anything inside a for loop

That means you have to read the entire body to know 
what’s going on

More room for bugs

Declarative code is written in a higher level of 
abstraction

In our case, maps and filters, rather than object 
creation and modification

Higher order functions instead of control structures and
primitive checks

Less moving parts, hide the unnecessary details
26



Dec. v Imp. – A spectrum, not dichotomy

 Before Java 5, we had to iterate by index, or use the iterator
directly
 Even more bugs: infinite loop, index modifications

 Using list.add is more declarative than managing the 
internal data structure on your own
 Using a library/function is usually more declarative than inlining its code

 Applies to syntax, not just semantics
 An array initializer (new int[] {1, 2, 3}) is more declarative 

than doing it manually

 A lambda expression is more declarative than an anonymous functions, 
but a method reference is more declarative than a lambda expression

 Rule of thumb: Less tokens⇒ More declarative

27



• Avoid loops, use Streams
– Almost any loop can be replaced with a Stream call

– The new version of IntelliJ does this automagically

• Avoid nulls, use Optionals

– Optionals are clearer, safer, compose better, and support higher level 
functions

– Only use nulls when dealing 
with legacy APIs

• Prefer declarative to imperative
code whenever possible

28



Demo

29



Java 8,11,15,16
Lambda Expressions 

and Streams

30

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

