
Object-Oriented
Programming

in the Java language

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Part 8. GUI: Java FX

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

What JavaFX is?

• JavaFX is a framework and (large) set of objects we
can use to develop GUI-based applications

• The JavaFX API is a good example of how object-
oriented principles can be applied in software
development

JavaFX vs Swing vs AWT

• Java was first released with GUI support in something called

the Abstract Windows Toolkit (AWT)

• AWT wasn’t bad, but it had some limitations, and some

particular problems with how it was implemented on some

platforms

• Ultimately, AWT (which still exists, but isn’t used much

anymore) was replaced by a new library called Swing, which

was more versatile, more robust, and more flexible.

JavaFX vs Swing vs AWT

• Swing was designed primarily for use in desktop applications

(although you could do some web-based things with it, too).

• Swing has now been replaced by a completely new GUI library

called JavaFX

• You can still use Swing (for the foreseeable future), but Oracle

isn’t going to develop it any further – it’s essentially a dead-

end technology

• Java has replaced Swing with JavaFX

• How long until JavaFX is replaced by something else? Nobody

knows; probably many years

The Basic Structure of a
JavaFX Program

• JavaFX programs all start not as some “regular” class like we’ve

been doing, but as an extension of the abstract Application

class in JavaFX, javafx.application.Application

public class MyProgram {
// Body of class

}

Becomes:

import javafx.application.Application;
…
public class MyProgram extends Application {

// Body of class
}

Panes, UI Controls,
and Shapes

• We can put the button directly on the scene, which
centered the button and made it occupy the entire window.

• Rarely is this what we really want to do
• One approach is to specify the size and location of each UI

element (like the buttons)
• A better solution is to put the UI elements (known as nodes)

into containers called panes, and then add the panes to the
scene

Panes, UI Controls,
and Shapes

Panes, UI Controls,
and Shapes

• Beyond the obvious, typical “active” UI elements (things we
can interact with, like buttons, etc.), are static shapes – lines,
circles, etc.

• Before we can do much with shapes, we have to talk about
coordinates within a pane.

• The top-left corner of a scene is always (0, 0), and the
(positive) X-axis goes to the right, and the (positive) Y-axis
goes down. Visually, we’re in Cartesian quadrant IV, but Y
stays positive.

• All coordinates are in pixels

Example

Common Properties and
Methods for Nodes

• Nodes share many common properties
• JavaFX style properties are a lot like CSS

(Cascading Style Sheets) use to specify styles in
HTML (Web) pages.

• For more on HTML and CSS, see Liang
supplements V.A and V.B (on the text’s companion
website)

• Thus, it’s known as JavaFX CSS

The Color Class

• There are 3 sets of color constructors (“mixers”):
• The ones named Color (or color) require double

values ϵ [0.0, 1.0] for the R/G/B/A components
• The ones named rgb require int values ϵ [0, 255]
• The hsb / hsba color models are also supported
• Just like String, Color is immutable.
• If we want a lighter version of this Color, we can use

.lighter(), but we get a NEW color, rather than
changing the value of the current color, just like
.toUpperCase doesn’t change a String; it gives us a
new one with upper case characters.

Example

Layout Panes

• As we’ve said (and have been doing), we add our
Nodes to a Pane, and then add the Pane to a Scene,
and then the Scene to a Stage (probably the primary
stage).

• How do we arrange (i.e., lay out) the Nodes on the
pane?

• Java has several different kinds of Panes that do a lot
of the layout work for us.

Layout Panes

Scene Builder

Scene Builder

• GUIs are created a lot faster than in Swing and
AWT

• More sophisticated and aesthetically pleasing UIs
• Easy integration of sounds, images and videos and

of web content
• Code is simplified in JavaFX by separating the UI

from the logic of the application
• JavaFX can be integrated in Swing applications,

allowing for a smoother transition

Example

Questions?

Object-Oriented
Programming

in the Java language

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Part 8. GUI: Java FX

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

