MMMMMMMMMMMMMMMMMMM

Object-Oriente |
Programming

in the Java language
Part 7. Collections(2/2)

{0

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua



mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

~O . HAUIOHANbHUMA

R Collection interface

The Collection interface provides methods such as add() and
remove() that are common to all containers:

Method Short description

boolean add(Element elem) Adds elem into the underlying container.

void clear() Removes all elements from the container.

boolean isEmpty() Checks whether the container has any elements or not.

Tterator<Element> iterator() Returns an Iterator<Element> object for iterating over the container.
boolean remove(Object obj) Removes the element if obj is present in the container.

int size() Returns the number of elements in the container.

Object[] toArray() Returns an array that has all elements in the container.




~O . HAUIOHANbHUMA

L e Collection interface

Methods in the Collection Interface that apply to
multiple elements:

Method Short Description
boolean addAll(Collection<? extends Adds all the elements in coll into the underlying
Element> coll) container.

boolean containsAll(Collection<?> coll) Checks if all elements given in coll are present in the
underlying container.

boolean removeAll(Collection<?> coll) Removes all elements from the underlying container that
are also presentin coll.

boolean retainAll(Collection<?> coll) Retains elements in the underlying container only if they
are also present in coll; it removes all other elements.




~O . HAUIOHANbHUMA

i Concrete Classes

 Numerous interfaces and abstract classes in the Collection
hierarchy provide the common methods that specific concrete

classes implement/extend.

* The concrete classes provide the actual functionality




HAUWIOHANBHUA
YHIBEPCUTET

KOPABNEBYAYBAHHSA
IMEHI ALIMIPANIA MAKAPOBA

Important Concrete Classes in
Collection Framework

Concrete Class

Short Description

Arraylist

LinkedlList

HashSet

TreeSet

HashMap

TreeMap

PriorityQueue

Internally implemented as a resizable array. This is one of the most widely used
concrete classes. Fast to search, but slow to insert or delete. Allows duplicates.

Internally implements a doubly linked list data structure. Fast to insert or delete
elements, but slow for searching elements. Additionally, LinkedList can be used when
you need a stack (LIFO) or queue (FIFO) data structure. Allows duplicates.

Internally implemented as a hash-table data structure. Used for storing a set of
elements—it does not allow storing duplicate elements. Fast for searching and
retrieving elements. It does not maintain any order for stored elements.

Internally implements a red-black tree data structure. Like HashSet, TreeSet does not
allow storing duplicates. However, unlike HashSet, it stores the elements in a sorted
order. It uses a tree data structure to decide where to store or search the elements, and
the position is decided by the sorting order.

Internally implemented as a hash-table data structure. Stores key and value pairs. Uses
hashing for finding a place to search or store a pair. Searching or inserting is very fast. It
does not store the elements in any order.

Internally implemented using a red-black tree data structure. Unlike HashMap, TreeMap
stores the elements in a sorted order. It uses a tree data structure to decide where to
store or search for keys, and the position is decided by the sorting order.

Internally implemented using heap data structure. A PriorityQueue is for retrieving
elements based on priority. Irrespective of the order in which you insert, when you
remove the elements, the highest priority element will be retrieved first.




~O . HAUIOHANbHUMA

e YHIBEPCUTET -
m KOPABJIEBYAYBAHHSA
IMEHI AOMIPANTA MAKAPOBA

ArrayList implements a resizable array.

 When you create a native array (say, new String[10]; ), the
size of the array is known (fixed) at the time of creation.

However, ArraylList is a dynamic array:

* itcan grow in size as required. Internally, an ArrayList
allocates a block of memory and grows it as required.

* So, accessing array elements is very fast in an ArrayList.

LinkedList implements interface List with data structure of linked
list.



~O . HAUIOHANbHUMA

& YHIBEPCUTET
m KOPABJIEBYAYBAHHSA
IMEHI AOMIPANTA MAKAPOBA

* Set, as we studied, contains no duplicates.

* Unlike List, a Set doesn’t remember where you inserted the
element (i.e., it doesn’t remember the insertion order).

There are two important concrete classes for Set:
 HashSet and TreeSet.

* A HashSet is for quickly inserting and retrieving elements;
it does not maintain any sorting order for the elements it

holds.

A TreeSet stores the elements in a sorted order (and it
implements the SortedSet interface).



Comparable and Comparator

Interfaces

 Comparable and Comparator interfaces are
used to compare similar objects (for example,
while performing searching or sorting).

* Assume that you have a container containing
a list of Person object.

* Now, how do you compare two Person
objects?



Comparable

The Comparable interface has only one method compareTo() ,
which is declared as follows:

int compareTo(Element that)

Since you are implementing the compareTo() method in a class,
you have this reference available. You can compare the current
element with the passed Element and return an int value.

What should the int value be? Well, here are the rules for
returning the integer value:

return 1 if current object > passed object
return @ if current object == passed object
return -1 if current object < passed object



Natural Ordering

But, what does >, < or == mean for an Element? It is
left to you to decide how to compare two objects!

But the meaning of comparison should be a natural
one; in other words, the comparison should mean

natural ordering.

Integers are comparing with each other, based on a

numeric order
Strings are comparing with each other, based on a

lexicographic comparison



Comparator

* |f you need to implement two or more
alternative ways to compare two similar
objects, then you may implement the

Comparator interface.




~O . HAUIOHANbHUMA

& YHIBEPCUTET
KOPABJIEBYAYBAHHSA
IMEHI AOMIPANTA MAKAPOBA

LET'S SEE THE CODE

risovach.ru




The Map Interface

A Map stores key and value pairs.

The Map interface does not extend the Collection
Interface.

However, there are methods in the Map interface that
you can use to get the objects classes that implement
the Collection interface to work around this problem.
Also, the method names in Map are very similar to the

methods in Collection, so it is easy to understand and
use Map.




There are two important concrete classes of Map:
HashMap and TreeMap.

A HashMap uses a hash table data structure
internally. In HashMap, searching (or looking up
elements) is a fast operation. However, HashMap
neither remembers the order in which you inserted
elements nor keeps elements in any sorted order.

A TreeMap uses a red-black tree data structure
internally. Unlike HashMap, TreeMap keeps the
elements in sorted order (i.e., sorted by its keys).
So, searching or inserting is somewhat slower than
the HashMap.



~O . HAUIOHANbHUMA

& YHIBEPCUTET
KOPABJIEBYAYBAHHSA
IMEHI AOMIPANTA MAKAPOBA

LET'S SEE THE CODE

risovach.ru




Questions?




MMMMMMMMMMMMMMMMMMM

Object-Oriente |
Programming

in the Java language
Part 7. Collections(2/2)

{0

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua



mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

