
Object-Oriented 
Programming 

in the Java language

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Part 7. Collections(2/2)

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/


Collection interface

The Collection interface provides methods such as add() and 

remove() that are common to all containers:



Collection interface

Methods in the Collection Interface that apply to 
multiple elements:



Concrete Classes

• Numerous interfaces and abstract classes in the Collection 

hierarchy provide the common methods that specific concrete 

classes implement/extend. 

• The concrete classes provide the actual functionality



Important Concrete Classes in 
Collection Framework



List Classes

ArrayList implements a resizable array. 

• When you create a native array (say, new String[10]; ), the

size of the array is known (fixed) at the time of creation. 

However, ArrayList is a dynamic array: 

• it can grow in size as required. Internally, an ArrayList

allocates a block of memory and grows it as required.

• So, accessing array elements is very fast in an ArrayList.

LinkedList implements interface List with data structure of linked 

list.



Set Classes

• Set, as we studied, contains no duplicates. 

• Unlike List, a Set doesn’t remember where you inserted the 
element (i.e., it doesn’t remember the insertion order).

There are two important concrete classes for Set: 

• HashSet and TreeSet. 

• A HashSet is for quickly inserting and retrieving elements; 
it does not maintain any sorting order for the elements it 
holds. 

• A TreeSet stores the elements in a sorted order (and it 
implements the SortedSet interface).



Comparable and Comparator 
Interfaces

• Comparable and Comparator interfaces are 

used to compare similar objects (for example, 

while performing searching or sorting). 

• Assume that you have a container containing 

a list of Person object. 

• Now, how do you compare two Person 

objects? 



Comparable

The Comparable interface has only one method compareTo() , 
which is declared as follows:

int compareTo(Element that)

Since you are implementing the compareTo() method in a class, 
you have this reference available. You can compare the current 
element with the passed Element and return an int value. 

What should the int value be? Well, here are the rules for 
returning the integer value:

return 1 if current object > passed object
return 0 if current object == passed object
return -1 if current object < passed object



Natural Ordering

But, what does >, < or == mean for an Element? It is 

left to you to decide how to compare two objects! 

But the meaning of comparison should be a natural 

one; in other words, the comparison should mean 

natural ordering.

Integers are comparing with each other, based on a 

numeric order

Strings are comparing with each other, based on a

lexicographic comparison



Comparator

• If you need to implement two or more 

alternative ways to compare two similar 

objects, then you may implement the 

Comparator interface.



Example



The Map Interface

• A Map stores key and value pairs. 

• The Map interface does not extend the Collection 

interface. 

• However, there are methods in the Map interface that 

you can use to get the objects classes that implement 

the Collection interface to work around this problem. 

• Also, the method names in Map are very similar to the 

methods in Collection, so it is easy to understand and 
use Map. 



Maps

There are two important concrete classes of Map:
HashMap and TreeMap.

• A HashMap uses a hash table data structure 
internally. In HashMap, searching (or looking up 
elements) is a fast operation. However, HashMap
neither remembers the order in which you inserted 
elements nor keeps elements in any sorted order.

• A TreeMap uses a red-black tree data structure 
internally. Unlike HashMap, TreeMap keeps the 
elements in sorted order (i.e., sorted by its keys). 
So, searching or inserting is somewhat slower than 
the HashMap.



Example



Questions?



Object-Oriented 
Programming 

in the Java language

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Part 7. Collections(2/2)

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

