
Object-Oriented 
Programming 

in the Java language

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Part 6. Collections(1/2): Lists.

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/


Just before we start…

Generics…

• Generics are a language feature introduced to Java in version 

1.5. Before generics were introduced in Java, the Object base 

class was used as an alternative to generics. 

• With generics, you write code for one type (say T) that is 

applicable for all types, instead of writing separate classes for 

each type. 



Example

class BoxPrinter<T> {

private T val;

public BoxPrinter(T arg) {

val = arg;

}

public String toString() {

return "[" + val + "]";

}

}

BoxPrinter<Integer> value1 = 

new BoxPrinter<Integer>(new Integer(10));

System.out.println(value1);

BoxPrinter<String> value2 = 

new BoxPrinter<String>("Hello world");

System.out.println(value2);



Notes for example

1. See the declaration of BoxPrinter:

class BoxPrinter<T>

You gave the BoxPrinter class a type placeholder 

<T>—the type name T within angle brackets 

“<” and “>” following the class name. 

You can use this type name inside the class to indicate 

that it is a placeholder for the actual type to be 

provided later.



Notes for example

2. Inside the class you first use T in field declaration:
private T val;

You are declaring val of the generic type—the actual type will be 
specified later when you use BoxPrinter. 

In main() , you declare a variable of type BoxPrinter for an 
Integer like this: 

BoxPrinter<Integer> value1

Here, you are specifying that T is of type Integer—identifier T (a 
placeholder) is replaced with the type Integer. 

So, the val inside BoxPrinter becomes Integer because T gets 
replaced with Integer.



Notes for example

3. Now, here is another place where you use T:

public BoxPrinter(T arg) {

val = arg;

}

Similar to the declaration of val with type T, you are saying that 

the argument for BoxPrinter constructor is of type T. 

Later in the main() method, when the constructor is called in 

new, you specify that T is of type Integer:

new BoxPrinter<Integer>(new Integer(10));



Example

class Pair<T1, T2> {

T1 object1;

T2 object2;

Pair(T1 one, T2 two) {

object1 = one;

object2 = two;

}

public T1 getFirst() {

return object1;

}

public T2 getSecond() {

return object2;

}

}

Pair<Integer, String> worldCup = 

new Pair<Integer, String>(2018, "Russia");

System.out.println("World cup " + worldCup.getFirst() +

" in " + worldCup.getSecond());



Diamond Syntax

• To simplify your life, Java 1.7 introduced the diamond syntax, 

in which the type parameters may be omitted: you can just 

leave it to the compiler to infer the types from the type 

declaration. So, the declaration can be simplified as

Pair<Integer, String> worldCup = 

new Pair<>(2018, "Russia");

Note that it is a common mistake to forget the diamond operator < > in the 
initialization expression, as in



ArrayList

• This lecture covers only one class from the Java Collection 

API: ArrayList. The rest of the classes from the Java Collection 

API are covered in next one.

• One of the reasons to include this class in the first part could 

be how frequently this class is used by all Java programmers.

• ArrayList is one of the most widely used classes from the 

Collections framework. It offers the best combination of 

features offered by an array and the List data structure. 

• The most commonly used operations with a list are: 

add items to a list, modify items in a list, delete items from a 

list, and iterate over the items



Using of ArrayList

• One frequently asked question by Java developers is, “Why 

should I bother with an ArrayList when I can already store 

objects of the same type in an array?” 

• The answer lies in the ease of use of an ArrayList. 

• You can compare an ArrayList with a resizable array. As you 

know, once it’s created, you can’t increase or decrease the size 

of an array. 

• On the other hand, an ArrayList automatically increases and 

decreases in size as elements are added to or removed from it. 

• Also, unlike arrays, you don’t need to specify an initial size to 

create an ArrayList.



Important properties 
of ArrayList

• It implements the interface List.

• It allows null values to be added to it.

• It implements all list operations (add, modify, and 
delete values).

• It allows duplicate values to be added to it.

• It maintains its insertion order.

• You can use either Iterator or ListIterator to iterate 
over the items of an ArrayList.

• It supports generics, making it type safe. 
(You have to declare the type of the elements that 
should be added to an ArrayList with its declaration.)



Creating an ArrayList

Let’s see:

ArrayList<String> myArrList = 
new ArrayList<String>();

Starting with Java version 7, you can omit the object type on the 
right side of the equal sign and create an ArrayList as follows:

ArrayList<String> myArrList = new ArrayList<>();



Adding elements 
to an ArrayList

ArrayList<String> list = new ArrayList<>();
list.add("one");
list.add("two");
list.add("four");
list.add(2, "three");



Adding elements 
to an ArrayList



Accessing elements 
of an ArrayList

ArrayList<String> myArrList = new ArrayList<>();

myArrList.add("One");

myArrList.add("Two");

myArrList.add("Four");

myArrList.add(2, "Three");

for (String element : myArrList) {

System.out.println(element);

}

ListIterator<String> iterator =

myArrList.listIterator();

while (iterator.hasNext()) {

System.out.println(iterator.next());

}

Using ListIterator:

Using enhanced for loop:



Modifying the elements 
of an ArrayList

ArrayList<String> myArrList = new ArrayList<>();

myArrList.add("One");

myArrList.add("Two");

myArrList.add("Three");

myArrList.set(1, "One and Half");

for (String element:myArrList) {

System.out.println(element);

}



Deleting the elements 
of an ArrayList

ArrayList<String> myArrList = new ArrayList<>();

String s1 = "One";

String s2 = "Two";

String s3 = "Three";

String s4 = "Four";

myArrList.add(s1);

myArrList.add(s2);

myArrList.add(s3);

myArrList.add(s4);

myArrList.remove(1);

for (String element:myArrList) {

System.out.println(element);

}

myArrList.remove(s3);

myArrList.remove("Four");

System.out.println();

for (String element : myArrList) {

System.out.println(element);

}



Example



Other methods of ArrayList

ADDING MULTIPLE ELEMENTS TO AN ARRAYLIST

You can add multiple elements to an ArrayList from another 
ArrayList or any other class that’s a subclass of Collection by 
using the following overloaded versions of method addAll:

■ addAll(Collection<? extends E> c)
■ addAll(int index, Collection<? extends E> c)



Other methods of ArrayList

ADDING MULTIPLE ELEMENTS TO AN ARRAYLIST

ArrayList<String> myArrList = new ArrayList<>();

myArrList.add("One");

myArrList.add("Two");

ArrayList<String> yourArrList = new ArrayList<>();

yourArrList.add("Three");

yourArrList.add("Four");

myArrList.addAll(1, yourArrList);

for (String val : myArrList) {

System.out.println(val);

}



Other methods of ArrayList

CLEARING ARRAYLIST ELEMENTS

You can remove all the ArrayList elements by calling clear on it. 

ArrayList<String> myArrList = new ArrayList<>();

myArrList.add("One");

myArrList.add("Two");

myArrList.clear();

for (String val:myArrList) {

System.out.println(val);

}



Other methods of ArrayList

ACCESSING INDIVIDUAL ARRAYLIST ELEMENTS

■ get(int index) — returns the element at the specified position in this 

list.

■ size() — returns the number of elements in this list.

■ contains(Object o) — returns true if this list contains the specified 

element.

■ indexOf(Object o) — returns the index of the first occurrence of the 

specified element in this list, or -1 if this list doesn’t contain the

element.

■ lastIndexOf(Object o) — returns the index of the last occurrence of 

the specified element in this list, or -1 if this list doesn’t contain the 
element.



Other methods of ArrayList

ACCESSING INDIVIDUAL ARRAYLIST ELEMENTS

• Three methods: contains, indexOf, and lastIndexOf—require
you to have an unambiguous and strong understanding of 
how to determine the equality of objects. 

• ArrayList stores objects, and these three methods will 
compare the values that you pass to these methods with all 
the elements of the ArrayList



Equality of Objects

• By default, objects are considered equal if they are 
referred to by the same variable (the String class is 
an exception with its pool of String objects). 

• If you want to compare objects by their state (values 
of the instance variable), override the equals
method in that class. 



Equality of Objects

The equals method implements an equivalence relation on non-null 
object references:

■ It is reflexive: for any non-null reference value x, x.equals(x) should 
return true.
■ It is symmetric: for any non-null reference values x and y, 
x.equals(y) should return true if and only if y.equals(x) returns true.
■ It is transitive: for any non-null reference values x, y, and z, if
x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) 
should return true.
■ It is consistent: for any non-null reference values x and y, multiple 
invocations of x.equals(y) consistently return true or consistently 
return false, provided no information used in equals() comparisons on 
the objects is modified.
■ For any non-null reference value x, x.equals(null) should return false.



Other methods of ArrayList

CREATING AN ARRAY FROM AN ARRAYLIST

• You can use the method toArray to return an array 
containing all the elements in an ArrayList in sequence from 
the first to the last element.

• Method toArray creates a new array, copies the elements of 
the ArrayList to it, and then returns it.

Now comes the tricky part. No references to the returned array, 
which is itself an object, are maintained by the ArrayList. But the 
references to the individual ArrayList elements are copied to the 
returned array and are still referred to by the ArrayList



Example



Questions?



Object-Oriented 
Programming 

in the Java language

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Part 6. Collections(1/2): Lists.

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

