
Object-Oriented
Programming

in the Java language

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Part 5. Exceptions. I/O in Java

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

Exceptions

• Exceptions in Java are objects. All exceptions are derived from
the java.lang.Throwable class.

• The two main subclasses Exception and Error constitute the
main categories of throwables, the term used to refer to both
exceptions and errors.

• The Exception Class represents exceptions that a program
would normally want to catch. Its subclass RuntimeException
represents many common programming errors that can
manifest at runtime (see the next subsection). Other
subclasses of the Exception class define other categories of
exceptions, e.g., I/O-related exceptions in the java.io package
(IOException, FileNotFoundException, EOFException, IOError)

Exceptions

The RuntimeException Class

• Runtime exceptions are all subclasses of the
java.lang.RuntimeException class, which is a subclass of the
Exception class.

• As these runtime exceptions are usually caused by program
bugs that should not occur in the first place, it is usually
more appropriate to treat them as faults in the program
design and let them be handled by the default exception
handler

• ArithmeticException, ArrayIndexOutOfBoundsException,
ClassCastException, IllegalArgumentException,
NumberFormatException, IllegalStateException,
NullPointerException

The Error Class

• The class Error and its subclasses define errors

that are invariably never explicitly caught and

are usually irrecoverable.

• AssertionError, ExceptionInInitializerError,

IOError, NoClassDefFoundError,

StackOverflowError,

Checked and
Unchecked Exceptions

• Except for RuntimeException, Error, and their

subclasses, all exceptions are called checked

exceptions.

• The compiler ensures that if a method can throw

a checked exception, directly or indirectly, the

method must explicitly deal with it.

• The method must either catch the exception and

take the appropriate action, or pass the

exception on to its caller

Checked and
Unchecked Exceptions

• Exceptions defined by Error and RuntimeException

classes and their subclasses are known as unchecked

exceptions, meaning that a method is not obliged to

deal with these kinds of exceptions.

• They are either irrecoverable (exemplified by the Error

class) and the program should not attempt to deal with

them, or

• They are programming errors (exemplified by the

RuntimeException class) and should usually be dealt

with as such, and not as exceptions.

Input & Output

• Creating a good input/output (I/O) system is
one of the more difficult tasks for a language
designer.

• This is evidenced by the number of different
approaches.

The File class (java.io)

• The File class has a deceiving name; you might
think it refers to a file, but it doesn’t.

• In fact, "FilePath" would have been a better
name for the class.

• It can represent either the name of a particular
file or the names of a set of files in a directory. If
it’s a set of files, you can ask for that set using the
list() method, which returns an array of String.

Interoperability with
java.nio.file package

• java.nio.file package defines interfaces and
classes for the Java virtual machine to access
files, file attributes, and file systems.

• This API may be used to overcome many of the
limitations of the java.io.File class. The toPath
method may be used to obtain a Path that uses
the abstract path represented by a File object to
locate a file.

• The resulting Path may be used with the Files
class to provide more efficient and extensive
access to additional file operations, file
attributes, and I/O exceptions to help diagnose
errors when an operation on a file fails.

Example

Input and output

• The Java library classes for I/O are divided by input
and output, as you can see by looking at the class
hierarchy in the JDK documentation.

• Through inheritance, everything derived from the
InputStream or Reader classes has basic methods
called read() for reading a single byte or an array
of bytes.

• Likewise, everything derived from OutputStream
or Writer classes has basic methods called write()
for writing a single byte or an array of bytes.

InputStream & OutputStream

• In java.io, the library designers started by deciding
that all classes that had anything to do with input
would be inherited from InputStream, and all
classes that were associated with output would be
inherited from OutputStream.

Types of InputStream

InputStream’s job is to represent classes that produce
input from different sources.

These sources can be:

1. An array of bytes.
2. A String object.
3. A file.
4. A "pipe," which works like a physical pipe: You put

things in at one end and they come out the other.
5. A sequence of other streams, so you can collect them

together into a single stream
6. Other sources, such as an Internet connection.

Types of InputStream

Types of OutputStream

Hierarchy of InputStreams

Hierarchy of OutputStreams

DataOutputStream &
DataInputStream

Writing Binary Values to a File

1. Create a FileOutputStream:

FileOutputStream outputFile =
new FileOutputStream("primitives.data");

2. Create a DataOutputStream which is chained to the FileOutputStream:

DataOutputStream outputStream =
new DataOutputStream(outputFile);

3. Write Java primitive values using relevant writeX() methods:

outputStream.writeBoolean(true);
outputStream.writeChar('A');
outputStream.writeByte(Byte.MAX_VALUE);
outputStream.writeShort(Short.MIN_VALUE);
outputStream.writeInt(Integer.MAX_VALUE);
outputStream.writeLong(Long.MIN_VALUE);
outputStream.writeFloat(Float.MAX_VALUE);
outputStream.writeDouble(Math.PI);

4. Close the filter stream, which also closes the underlying stream:

outputStream.close();

Reading Binary Values
From a File

1. Create a FileInputStream:

FileInputStream inputFile =
new FileInputStream("primitives.data");

2. Create a DataInputStream which is chained to the FileInputStream:

DataInputStream inputStream =
new DataInputStream(inputFile);

3. Read the (exact number of) Java primitive values in the same order they were
written out, using relevant readX() methods:

boolean v = inputStream.readBoolean();
char c = inputStream.readChar();
byte b = inputStream.readByte();
short s = inputStream.readShort();
int i = inputStream.readInt();
long l = inputStream.readLong();
float f = inputStream.readFloat();
double d = inputStream.readDouble();

4. Close the filter stream, which also closes the underlying stream:

inputStream.close();

• A character encoding is a scheme for representing characters.
Java programs represent values of the char type internally in
the 16-bit Unicode character encoding, but the host platform
might use another character encoding to represent and store
characters externally.

• The abstract classes Reader and Writer are the roots of the
inheritance hierarchies for streams that read and write
Unicode characters using a specific character encoding

• A reader is an input character stream that reads a sequence of
Unicode characters, and a writer is an output character
stream that writes a sequence of Unicode characters.

• Character encodings are used by readers and writers to
convert between external encoding and internal Unicode
characters.

Character Streams:
Readers and Writers

Selected Readers

BufferedReader A reader that buffers the characters read from
an underlying reader.
The underlying reader must be specified and
an optional buffer size can be given.

InputStreamReader Characters are read from a byte input stream
which must be specified.
The default character encoding is used if no
character encoding is explicitly specified.

FileReader Reads characters from a file, using the default
character encoding.
The file can be specified by a File object, a
FileDescriptor, or a String file name.
It automatically creates a FileInputStream that
is associated with the file.

Character Streams:
Readers and Writers

Selected Writers

BufferedWriter A writer that buffers the characters before writing
them to an underlying writer. The underlying writer
must be specified, and an optional buffer size can be
specified.

OutputStreamWriter Characters are written to a byte output stream which
must be specified. The default character encoding is
used if no explicit character encoding is specified.

FileWriter Writes characters to a file, using the default character
encoding. The file can be specified by a File object, a
FileDescriptor, or a String file name. It automatically
creates a FileOutputStream that is associated with the
file

PrintWriter A filter that allows text representation of Java objects
and Java primitive values to be written to an underlying
output stream or writer. The underlying output stream
or writer must be specified.

Character Streams:
Readers and Writers

Writing Text Files

Reading Text Files

Using Buffered
Writers & Readers

• Object serialization allows an object to be
transformed into a sequence of bytes that can
later be re-created (deserialized) into the original
object.

• After deserialization, the object has the same
state as it had when it was serialized, barring any
data members that were not serializable.

• This mechanism is generally known as
persistence.

• Java provides this facility through the ObjectInput
and ObjectOutput interfaces, which allow the
reading and writing of objects from and to
streams.

Object Serialization

• The ObjectOutputStream class and the
ObjectInputStream class implement the
ObjectOutput interface and the ObjectInput
interface, respectively, providing methods to
write and read binary representation of
objects as well as Java primitive values.

Object Serialization

Object Stream Chaining

Marker Interface

• The marker interface pattern used with languages that
provide run-time type information about objects. It
provides a means to associate metadata with a class
where the language does not have explicit support for
such metadata.

• To use this pattern, a class implements a marker
interface, and methods that interact with instances of
that class test for the existence of the interface.

• Whereas a typical interface specifies functionality (in
the form of method declarations) that an
implementing class must support, a marker interface
need not do so.

Serializable

• An example of the application of marker interfaces is
the Serializable interface.

• A class implements this interface to indicate that its
non-transient data members can be written to an
ObjectOutputStream.

• The ObjectOutputStream method writeObject()
contains a series of instanceof tests to determine
writability, one of which looks for the Serializable
interface.

• If any of these tests fails, the method throws a
NotSerializableException

Example

Questions?

Object-Oriented
Programming

in the Java language

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Part 5. Exceptions. I/O in Java

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

