
Object-Oriented
Programming

in the Java language

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Part 3. TDD and JUnit

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

History
ÅKent Beck developed the first xUnitautomated test

tool for Smalltalk in mid-флΩǎ

ÅBeck and Gamma (of design patterns Gang of Four)
developed JUnit on a flight from Zurich to
Washington, D.C.

ÅaŀǊǘƛƴ CƻǿƭŜǊΥ άbŜǾŜǊ ƛƴ ǘƘŜ ŦƛŜƭŘ ƻŦ ǎƻŦǘǿŀǊŜ
development was so much owed by so many to so
ŦŜǿ ƭƛƴŜǎ ƻŦ ŎƻŘŜΦέ

ÅJUnit has become the standard tool for Test-Driven
Development in Java (see junit.org)

ÅJUnit test generators now part of many Java IDEs
(IntelliJ IDEA, NetBeans, Eclipse, BlueJΣ Χύ

Why create a test suite?
ÅObviously you have to test your codeτright?

ïYou can do ad hoctesting (running whatever tests occur
to you at the moment), or

ïYou can build a test suite (a thorough set of tests that can
be run at any time)

ÅDisadvantages of a test suite

ïLǘΩǎ ŀ ƭƻǘ ƻŦ ŜȄǘǊŀ ǇǊƻƎǊŀƳƳƛƴƎ
ÅTrue, but use of a good test framework can help quite a bit

ï¸ƻǳ ŘƻƴΩǘ ƘŀǾŜ ǘƛƳŜ ǘƻ Řƻ ŀƭƭ ǘƘŀǘ ŜȄǘǊŀ ǿƻǊƪ
ÅFalse! Experiments repeatedly show that test suites reduce

debugging time more than the amount spent building the test
suite

ÅAdvantages of a test suite

ïReduces total number of bugs in delivered code

ïMakes code much more maintainable and refactorable

Architectural overview

ÅJUnit test framework is a
package of classes that lets
you write tests for each
method, then easily run
those tests

ÅTestRunnerruns tests and
reports TestResults

ÅYou test your class by
extending abstract class
TestCase(optional)

ÅTo write test cases, you
need to know and
understand the
Assertclass

Writing a TestCase

ÅTo start using JUnit, create a subclass of TestCase, (optional in
JUnit 4 and 5) to which you add test methods

ÅName of class is important ςshould be of the form
MyClassTest

ÅThis naming convention lets TestRunnerautomatically find
your test classes

import org.junit.jupiter.api. BeforeEach ;

import static org.junit.jupiter.api.Assertions .*;

class MainTest {

@BeforeEach

void setUp () {

}

}

Writing methods in TestCase

Å Pattern follows programming by contractparadigm:
ï Set up preconditions
ï Exercise functionality being tested
ï Check postconditions

Å Example:
public void testEmptyList () {

Bowl emptyBowl = new Bowl();
assertEquals ƽƧ3ÉÚÅ ÏÆ ÁÎ ÅÍÐÔÙ ÌÉÓÔ ÓÈÏÕÌÄ ÂÅ ÚÅÒÏƚƨƗ

0, emptyList.size ());
assertTrue ƽƧ!Î ÅÍÐÔÙ ÂÏ×Ì ÓÈÏÕÌÄ ÒÅÐÏÒÔ ÅÍÐÔÙƚƨƗ

emptyBowl.isEmpty ());
}

Å Things to notice:
ï Specific method signature ςpublic void testWhatever()
ï Coding follows pattern
ï Notice the assert-type callsΧ

Assert methods

ÅEach assert method has parameters like these:
message, expected-value, actual-value

ÅAssert methods dealing with floating point numbers
get an additional argument, a tolerance

ÅEach assert method has an equivalent version that
does not take a message ςhowever, this use is not
recommended because:

ïmessages helps documents the tests

ïmessages provide additional information when
reading failure logs

Assert methods

Å assertTrue(String message, Boolean test)

Å assertFalse (String message, Boolean test)

Å assertNull (String message, Object object)

Å assertNotNull (String message, Object object)

Å assertEquals (String message, Object expected , Object actual)

// uses equals method

Å assertSame (String message, Object expected , Object actual)

// uses == operator

Å assertNotSame (String message, Object expected , Object actual)

More stuff in test classes

Å Suppose you want to test a class Counter

Å public class CounterTest {

ïThis is the unit test for the Counter class

Å public CounterTest() { } //Default constructor

Å protected void setUp()

ïTest fixture creates and initializes instance variables, etc.

Å protected void tearDown()

ïReleases any system resources used by the test fixture

Å public void testIncrement (), public void testDecrement ()

ïThese methods contain tests for the Counter methods
increment() , decrement() , etc.

ïNote capitalization convention

JUnit tests for Counter

public class CounterTest {
Counter counter1;

protected void setUp () { // creates a test fixture
counter1 = new Counter();

}

public void testIncrement () {
assertTrue(counter1.increment() == 1);
assertTrue(counter1.increment() == 2);

}

public void testDecrement () {
assertTrue(counter1.decrement() == - 1);

}
} Note that each test begins

with a brand newcounter

This means you donôt have to worry

about the order in which the tests are run

TestSuites
Å TestSuitescollect a selection of tests to run them as a unit
Å Collections automatically use TestSuites, however to specify the

order in which tests are run, write your own:

Å Should seldom have to write your own TestSuitesas each method
in your TestCaseshould be independent of all others

Å Can create TestSuitesthat test a whole package:

public static Test suite() {
suite.addTest (new TestBowl ƽƧtestBowl ƨƾƾƘ
suite.addTest (new TestBowl ƽƧtestAdding ƨƾƾƘ
return suite;

}

public static Test suite() {
TestSuite suite = new TestSuite ();
suite.addTestSuite (TestBowl.class);
suite.addTestSuite (TestFruit.class);
return suite;

}

JUnit in IntelliJ IDEA

At first you have to create a directory for your tests

JUnit in IntelliJ IDEA

Then, mark it as Test Sources Root

JUnit in IntelliJ IDEA

In your class choose ñGo To Ʒ Test

JUnit in IntelliJ IDEA

As test is not exist, choose

Create New Testé

Fill data in the Dialog

JUnit in IntelliJ IDEA

