
Object-Oriented
Programming

in the Java language

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Part 2. TDD and JUnit

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

History
• Kent Beck developed the first xUnit automated test

tool for Smalltalk in mid-90’s

• Beck and Gamma (of design patterns Gang of Four)
developed JUnit on a flight from Zurich to
Washington, D.C.

• Martin Fowler: “Never in the field of software
development was so much owed by so many to so
few lines of code.”

• JUnit has become the standard tool for Test-Driven
Development in Java (see junit.org)

• JUnit test generators now part of many Java IDEs
(IntelliJ IDEA, NetBeans, Eclipse, BlueJ, …)

Why create a test suite?
• Obviously you have to test your code—right?

– You can do ad hoc testing (running whatever tests occur
to you at the moment), or

– You can build a test suite (a thorough set of tests that can
be run at any time)

• Disadvantages of a test suite

– It’s a lot of extra programming
• True, but use of a good test framework can help quite a bit

– You don’t have time to do all that extra work
• False! Experiments repeatedly show that test suites reduce

debugging time more than the amount spent building the test
suite

• Advantages of a test suite

– Reduces total number of bugs in delivered code

– Makes code much more maintainable and refactorable

Architectural overview

• JUnit test framework is a
package of classes that lets
you write tests for each
method, then easily run
those tests

• TestRunner runs tests and
reports TestResults

• You test your class by
extending abstract class
TestCase (optional)

• To write test cases, you
need to know and
understand the
Assert class

Writing a TestCase

• To start using JUnit, create a subclass of TestCase, (optional in
JUnit 4 and 5) to which you add test methods

• Name of class is important – should be of the form
MyClassTest

• This naming convention lets TestRunner automatically find
your test classes

import org.junit.jupiter.api.BeforeEach;

import static org.junit.jupiter.api.Assertions.*;

class MainTest {

@BeforeEach

void setUp() {

}

}

Writing methods in TestCase

• Pattern follows programming by contract paradigm:
– Set up preconditions
– Exercise functionality being tested
– Check postconditions

• Example:
public void testEmptyList() {

Bowl emptyBowl = new Bowl();
assertEquals(“Size of an empty list should be zero.”,

0, emptyList.size());
assertTrue(“An empty bowl should report empty.”,

emptyBowl.isEmpty());
}

• Things to notice:
– Specific method signature – public void testWhatever()
– Coding follows pattern
– Notice the assert-type calls…

Assert methods

• Each assert method has parameters like these:
message, expected-value, actual-value

• Assert methods dealing with floating point numbers
get an additional argument, a tolerance

• Each assert method has an equivalent version that
does not take a message – however, this use is not
recommended because:

– messages helps documents the tests

– messages provide additional information when
reading failure logs

Assert methods

• assertTrue(String message, Boolean test)

• assertFalse(String message, Boolean test)

• assertNull(String message, Object object)

• assertNotNull(String message, Object object)

• assertEquals(String message, Object expected, Object actual)

// uses equals method

• assertSame(String message, Object expected, Object actual)

// uses == operator

• assertNotSame(String message, Object expected, Object actual)

More stuff in test classes

• Suppose you want to test a class Counter

• public class CounterTest {

– This is the unit test for the Counter class

• public CounterTest() { } //Default constructor

• protected void setUp()

– Test fixture creates and initializes instance variables, etc.

• protected void tearDown()

– Releases any system resources used by the test fixture

• public void testIncrement(), public void testDecrement()

– These methods contain tests for the Counter methods
increment(), decrement(), etc.

– Note capitalization convention

JUnit tests for Counter
public class CounterTest {

Counter counter1;
@BeforeEach
protected void setUp() { // creates a test fixture

counter1 = new Counter();
}
@Test
public void testIncrement() {

assertTrue(counter1.increment() == 1);
assertTrue(counter1.increment() == 2);

}
@Test
public void testDecrement() {

assertTrue(counter1.decrement() == -1);
}

} Note that each test begins

with a brand new counter

This means you don’t have to worry

about the order in which the tests are run

TestSuites
• TestSuites collect a selection of tests to run them as a unit
• Collections automatically use TestSuites, however to specify the

order in which tests are run, write your own:

• Should seldom have to write your own TestSuites as each method
in your TestCase should be independent of all others

• Can create TestSuites that test a whole package:

public static Test suite() {
suite.addTest(new TestBowl(“testBowl”));
suite.addTest(new TestBowl(“testAdding”));
return suite;

}

public static Test suite() {
TestSuite suite = new TestSuite();
suite.addTestSuite(TestBowl.class);
suite.addTestSuite(TestFruit.class);
return suite;

}

JUnit in IntelliJ IDEA

At first you have to create a directory for your tests

JUnit in IntelliJ IDEA

Then, mark it as Test Sources Root

JUnit in IntelliJ IDEA

In your class choose “Go To ► Test

JUnit in IntelliJ IDEA

As test is not exist, choose

Create New Test…

Fill data in the Dialog

JUnit in IntelliJ IDEA

JUnit in IntelliJ IDEA

JUnit in IntelliJ IDEA

Run test of the generated method. It fails

JUnit in IntelliJ IDEA

Write correct method body. Run test of the generated method. It should be OK

More Information

• http://www.junit.org
– Download of JUnit

– Lots of information on using JUnit

• http://sourceforge.net/projects/cppunit
– C++ port of Junit

• http://www.thecoadletter.com
– Information on Test-Driven Development

http://www.junit.org/
http://sourceforge.net/projects/cppunit
http://www.thecoadletter.com/

Example

Questions?

Object-Oriented
Programming

in the Java language

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Part 2. TDD and JUnit

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

