
Object-Oriented Programming
in the Java language

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Part 2. Control Flow

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

Overview of Control Flow
Statements

• Selection statements: if, if-else, and switch.

• Iteration statements: while, do-while, basic for, and
enhanced for.

• Transfer statements: break, continue, return, try-catch-finally,
throw, and assert.

Selection Statements

• simple if statement

• if-else statement

• switch statement

The Simple if Statement

• The simple if statement has the following syntax:

if (<conditional expression>) <statement>

Examples:

// emergency is a boolean variable

if (emergency) operate();

if (temperature > critical)

soundAlarm();

Activity Diagram
for if Statements

The Simple if Statement

Note that <statement> can be a block, and the block
notation is necessary if more than one statement is to be
executed when the <conditional expression> is true.

if (catIsAway()) { // Block

getFishingRod();

goFishing();

}

The Simple if Statement

Note that the if block can be any valid statement. In
particular, it can be the empty statement (;) or the empty
block ({}). A common programming error is an inadvertent
use of the empty statement.

if (emergency);

// Empty if block operate();

// Executed regardless of whether

// it was an emergency or not.

The if-else Statement

The if-else statement is used to decide between two
actions, based on a condition. It has the following
syntax:

if (<conditional expression>)

<statement1>

else

<statement2>

The if-else Statement
examples

if (emergency)

operate();

else

joinQueue();

if (temperature>critical)

soundAlarm();

else

businessAsUsual();

if (catIsAway()) {

getFishingRod();

goFishing();

} else

playWithCat();

if statements can be nested

if (temperature >= upperLimit) { //(1)

if (danger) // (2) Simple if.

soundAlarm();

if (critical) // (3)

evacuate();

else // Goes with if at (3).

turnHeaterOff();

} else // Goes with if at (1).

turnHeaterOn();

Use of block notation {}

// (A): Block notation

if (temperature > upperLimit) { // (1)

if (danger) soundAlarm(); // (2)

} else // Goes with if at (1).

turnHeaterOn();

// (B): Without block notation

if (temperature > upperLimit) // (1)

if (danger) soundAlarm(); // (2)

else turnHeaterOn(); // Goes with if at (2).

// (C):

if (temperature > upperLimit) // (1)

if (danger) // (2)

soundAlarm();

else // Goes with if at (2).

turnHeaterOn();

Cascading if-else statements

if (temperature >= upperLimit) { // (1)

soundAlarm();

turnHeaterOff();

} else if (temperature < lowerLimit) { // (2)

soundAlarm();

turnHeaterOn();

} else if (temperature==(upperLimit+lowerLimit)/2) {

// (3)

doingFine();

} else // (4)

noCauseToWorry();

The switch Statement

switch (<switch expression>) {

case label1: <statement1>

case label2: <statement2>

...

case labeln: <statementn>

default: <statement>

} // end switch

Activity Diagram
for a switch Statement

Fall Through
in a switch Statement

public class Advice {

public final static int LITTLE_ADVICE = 0;

public final static int MORE_ADVICE = 1;

public final static int LOTS_OF_ADVICE = 2;

public static void main(String[] args) {

dispenseAdvice(LOTS_OF_ADVICE);

}

………// in the next slide

}

public static void dispenseAdvice(int howMuchAdvice){

switch(howMuchAdvice) { // (1)

case LOTS_OF_ADVICE:

System.out.println("See no evil."); // (2)

case MORE_ADVICE:

System.out.println("Speak no evil.");// (3)

case LITTLE_ADVICE:

System.out.println("Hear no evil."); // (4)

break; // (5)

default:

System.out.println("No advice."); // (6)

}

}

Activity Diagram
for a switch Statement

Using break in a switch
Statement

public static String digitToString(char dig) {

String str = "";

switch(dig) {

case ’1’: str = "one"; break;

case ’2’: str = "two"; break;

case ’3’: str = "three"; break;

case ’4’: str = "four"; break;

case ’5’: str = "five"; break;

case ’6’: str = "six"; break;

case ’7’: str = "seven"; break;

case ’8’: str = "eight"; break;

case ’9’: str = "nine"; break;

case ’0’: str = "zero"; break;

default:

System.out.println(dig+" is not a digit!");

}

return str;

}

Iteration Statements

Java provides four language constructs
for loop construction:

• the while statement

• the do-while statement

• the basic for statement

• the enhanced for statement

The while Statement

The syntax of the while loop is

while (<loop condition>)

<loop body>

The <loop condition> is evaluated before executing the <loop
body>. The while statement executes the <loop body> as long as the
<loop condition> is true.

When the <loop condition> becomes false, the loop is terminated
and execution continues with the statement immediately following
the loop.

Activity Diagram for
the while Statement

The while statement is normally used when the number of
iterations is not known.

while (noSignOfLife())

keepLooking();

The while Statement
(warning)

Since the <loop body> can be any valid statement, inadvertently
terminating each line with the empty statement (;) can give
unintended results.

Always using a block statement, { ... }, as the <loop body> helps to
avoid such problems.

//Empty statement as loop body!

while (noSignOfLife());

keepLooking();

// Statement not in the loop body.

The do-while Statement

The syntax of the do-while loop is

do

<loop body>

while (<loop condition>);

The <loop condition> is evaluated after executing the <loop body>.
The value of the <loop condition> is subjected to unboxing if it is
of the type Boolean. The do-while statement executes the <loop
body> until the <loop condition> becomes false.

When the <loop condition> becomes false, the loop is terminated
and execution continues with the statement immediately
following the loop.

Activity Diagram for the
do-while Statement

while and do-while
The <loop body> in a do-while loop is invariably a statement

block. It is instructive to compare the while and the do-while
loops.

In the examples below, the mice might never get to play if the
cat is not away, as in the loop at (1). The mice do get to play at
least once (at the peril of losing their life) in the loop at (2).

while (cat.isAway()) { // (1)

mice.play();

}

do { // (2)

mice.play();

} while (cat.isAway());

The for(;;) Statement

The for(;;) loop is the most general of all the loops. It is mostly
used for counter-controlled loops, i.e., when the number of
iterations is known beforehand.

The syntax of the loop is as follows:

for (<initialization>;

<loop condition>;

<increment expression>)

<loop body>

The semantics of
the for(;;) loop

<initialization>

while (<loop condition>) {

<loop body>

<increment expression>

}

Activity Diagram for
the for Statement

for statement examples

int sum = 0;

int[] array = {12, 23, 5, 7, 19};

for (int index = 0; index < array.length; index++) // (1)

sum += array[index];

for (int i = 0, j = 1, k = 2; ... ; ...) ...; // (2)

for (int i = 0, String str = "@"; ... ; ...) ...; // (3)

//Compile time error.

int i, j, k; // Variable declaration

for (i = 0, j = 1, k = 2; ... ; ...) ...; // (4)

//Only initialization

for statement examples

// (5) Not legal and ugly:

for (int i = 0, System.out.println("not legal!");

flag; i++) { //Error!

// loop body

}

// (6) Legal, but still ugly:

int i; // declaration factored out.

for (i = 0, System.out.println("legal!");
flag; i++) { // OK.

// loop body

}

for statement examples

The <increment expression> can also be a comma-separated list
of expression statements. The following code specifies a for(;;)
loop that has a comma-separated list of three variables in the
<initialization> section, and a comma-separated list of two
expressions in the <increment expression> section:

for statement examples

// Legal usage but not recommended.

int[][] sqMatrix = { {3, 4, 6}, {5, 7, 4}, {5, 8, 9} };

for (int i = 0,

j = sqMatrix[0].length - 1,

asymDiagonal = 0; // initialization

i < sqMatrix.length; // loop condition

i++, j--) // increment expression

asymDiagonal += sqMatrix[i][j]; // loop body

for(;;) statement

All sections in the for(;;) header are optional. Any or all of
them can be left empty, but the two semicolons are mandatory.
In particular, leaving out the <loop condition> signifies that the
loop condition is true.

The “crab”, (;;), is commonly used to construct an infinite
loop, where termination is presumably achieved through code
in the loop body (see next section on transfer statements):

for (;;) Java.programming();

// Infinite loop

The for(:) Statement

The enhanced for loop is convenient when we need to iterate
over an array or a collection, especially when some operation
needs to be performed on each element of the array or
collection.

The for(:) Statement

The element variable is local to the loop block and is not
accessible after the loop terminates.

Also, changing the value of the current variable does not
change any value in the array.

The loop body, which can be a simple statement or a
statement block, is executed for each element in the array and
there is no danger of any out-of-bounds errors.

Transfer Statements

Java provides six language constructs for transferring
control in a program:

• break

• continue

• return

• try-catch-finally

• throw

• assert

Labeled Statements

A statement may have a label.

<label> : <statement>

A label is any valid identifier and it always immediately
precedes the statement.

Label names exist in their own name space, so that they do
not conflict with names of packages, classes, interfaces,
methods, fields, and local variables.

Labeled Statements

A statement can have multiple labels:

LabelA: LabelB:

System.out.println(

"Mutliple labels. Use judiciously.");

A declaration statement cannot have a label:

L0: int i = 0; // Compile time error.

A labeled statement is executed as if it was unlabeled, unless it
is the break or continue statement.

The break Statement

The break statement comes in two forms:
the unlabeled and the labeled form.

break; // the unlabeled form

break <label>; // the labeled form

Unlabeled break

The unlabeled break statement terminates

loops (for(;;), for(:), while, do-while)

and

switch statements,

and transfers control out of the current context (i.e., the
closest enclosing block).

The rest of the statement body is skipped, and execution
continues after the enclosing statement.

Labeled break

A labeled break statement can be used to terminate any
labeled statement that contains the break statement.

Control is then transferred to the statement following the
enclosing labeled statement.

In the case of a labeled block, the rest of the block is
skipped and execution continues with the statement
following the block:

Labeled break

out:

{ // (1) Labeled block

// ...

if (j == 10) break out;

// (2) Terminate block. Control to (3).

System.out.println(j);

// Rest of the block not executed if j == 10.

// ...

}

// (3) Continue here.

The continue Statement

Like the break statement, the continue statement also comes in
two forms: the unlabeled and the labeled form.

continue; // the unlabeled form

continue <label>; // the labeled form

The continue Statement

The continue statement can only be used in a for(;;),
for(:), while, or do-while loop to prematurely stop
the current iteration of the loop body and proceed with
the next iteration, if possible.

The continue Statement

• In the case of the while and do-while loops, the rest of
the loop body is skipped, that is, stopping the current
iteration, with execution continuing with the
<loop condition>.

• In the case of the for(;;) loop, the rest of the loop body
is skipped, with execution continuing with the
<increment expression>.

The return Statement

The return statement is used to stop execution of a
method and transfer control back to the calling code (also
called the caller).

The usage of the two forms of the return statement is
dictated by whether it is used in a void or a non-void
method

The return Statement

Questions?

Object-Oriented Programming
in the Java language

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Part 2. Control Flow

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

