
Object-Oriented
Programming

in the Java language

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Part 1. Introduction to Objects

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

The progress of abstraction

• Assembly language is a small abstraction
of the underlying machine.

• Many so-called “imperative” languages that
followed (such as FORTRAN, BASIC, and C)
were abstractions of assembly language

• The object-oriented approach goes a step
further by providing tools for the programmer
to represent elements in the problem space

The progress of abstraction

• OOP allows you to describe the problem in
terms of the problem, rather than in terms of
the computer where the solution will run.

• There’s still a connection back to the
computer:

Each object looks quite a bit like a little computer —
it has a state, and it has operations that you can
ask it to perform

Characteristics of OOP

1. Everything is an object

2. A program is a bunch of objects telling each
other what to do by sending messages

3. Each object has its own memory made up of
other objects

4. Every object has a type

5. All objects of a particular type can receive
the same messages

What object is?

An object has state, behavior and identity

This means that an object can have internal data
(which gives it state), methods (to produce
behavior), and each object can be uniquely
distinguished from every other object — to put
this in a concrete sense, each object has a
unique address in memory

An object has an interface

In object-oriented programming we create new
data types, but all object-oriented programming
languages use the “class” keyword.

When you see the word “type” think “class” and
vice versa

Once a class is established, you can make as many
objects of that class as you like, and then
manipulate those objects as if they are the
elements that exist in the problem you are trying
to solve.

An object has an interface

Each object can satisfy only certain requests.
The requests you can make of an object are
defined by its interface, and the type is what
determines the interface

Composition (Aggregation)

“has-a”

Inheritance

“is-a”

Reusing the implementation

The simplest way to reuse a class is to just use
an object of that class directly, but you can also
place an object of that class inside a new class

Because you are composing a new class from
existing classes, this concept is called composition
(if the composition happens dynamically, it’s usually
called aggregation).

Composition is often referred to as a “has-a”
relationship, as in “A car has an engine”

Composition / Aggregation

Inheritance

We can take the existing class, clone it, and then
make additions and modifications to the clone

Polymorphism

Let’s consider a musician, that uses musical instrument for play

Example

You treat everything as an object, using a single
consistent syntax. Although you treat everything as
an object, the identifier you manipulate is actually a
“reference” to an object

You must create all the objects

When you create a reference, you want to connect
it with a new object. You do so, in general, with the
new operator:

String s = new String("asdf");

Scanner in = new Scanner(System.in);

Java Basics

Special case: primitive types

Java determines the size of each primitive type.

These sizes don’t change from one machine
architecture to another as they do in most languages.

This size invariance is one reason Java programs are
more portable than programs in most other languages.

Java Basics

Primitive types

Arrays in Java

• Java array is guaranteed to be initialized and
cannot be accessed outside of its range.

• The range checking comes at the price of
having a small amount of memory overhead
on each array as well as verifying the index
at run time, but the assumption is that the
safety and increased productivity are worth
the expense

Arrays in Java

• When you create an array of objects, you are
really creating an array of references, and
each of those references is automatically
initialized to a special value with its own
keyword: null

• You can also create an array of primitives.
Again, the compiler guarantees initialization
because it zeroes the memory for that array

Instrument[] ensemble = new Instrument[5];
int[] nums = new int[10];
double[] x = {0.1, -0.4, 0.6, 0.2};

Access modifiers

• Java provides access specifiers to allow the
library creator to say what is available to the
client programmer and what is not.

• The levels of access control from “most
access” to “least access” are public,
protected, package access (which has no
keyword), and private.

Access modifiers

For members (fields and methods)

For top-level types (Classes, Interfaces, Enums…)

Other access modifiers

For top-level types (Classes, Interfaces, Enums…)

Other access modifiers

For members (fields and methods)

Example

Questions?

Object-Oriented
Programming

in the Java language

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Part 1. Introduction to Objects

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

