MMMMMMMMMMMMMMMMMMM

Object-Oriented

Programming )
in the Java language S
in SUae ;""""/

Part 1. Introduction to Objects

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua



mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

.| The progress of abstraction

* Assembly language is a small abstraction
of the underlying machine.

* Manys

o-called “imperative” languages that

followed (such as FORTRAN, BASIC, and C)

were d

ostractions of assembly language

* The obj

further

ect-oriented approach goes a step
by providing tools for the programmer

to represent elements in the problem space



. The progress of abstraction

* OOP allows you to describe the problem in
terms of the problem, rather than in terms of
the computer where the solution will run.

e There’s still a connection back to the
computer:

Each object looks quite a bit like a little computer —
it has a state, and it has operations that you can

ask it to perform



Characteristics of OOP

1. Everything is an object

2. A program is a bunch of objects telling each
other what to do by sending messages

3. Each object has its own memory made up of
other objects

4. Every object has a type

5. All objects of a particular type can receive
the same messages



This means that an ocht can have internal data
(which gives it state), methods (to produce
behavior), and each object can be uniquely
distinguished from every other object — to put
this in a concrete sense, each object has a
unique address in memory



An object has an interface

In object-oriented programming we create new
data types, but all object-oriented programming
languages use the “class” keyword.

When you see the word “type” think “class” and
vice versa

Once a class is established, you can make as many
objects of that class as you like, and then
manipulate those objects as if they are the
elements that exist in the problem you are trying
to solve.



An object has an interface

Each object can satisfy only certain requests.
The requests you can make of an object are
defined by its interface, and the type is what
determines the interface

Light
Type Name

on i)
offi )
brigh teni)

dim(]
new Light();

Interface

Light 1t
1t.on();




Composition (Aggregation)

llhas_all
Inheritance

llis_aﬂ




) Zi.) Composition / Aggregation

The simplest way to reuse a class is to just use
an object of that class directly, but you can also
place an object of that class inside a new class

Because you are composing a new class from
existing classes, this concept is called composition
(if the composition happens dynamically, it’s usually
called aggregation).

Car - Engine

Composition is often referred to as a “has-a”
relationship, as in “A car has an engine”



We can take the existing class, clone it, and then
make additions and modifications to the clone

Shape

draw(}
erase()
maove()
getColar()
setColor()

Fily

Circle

Square

Triangle




~O  HAUIOHANBHUMA

& YHIBEPCUTET L
m KOPABJEBYAYBAHHSA
IMEHI AOMIPANTA MAKAPOBA

Let’s consider a musician, that uses musical instrument for play

Instrument

Musician |- >

+play(String melody)
#playMote(char note)
Fily

Drum Piano Guitar

#playMote(char note) #playMote{char note) #playMote{char note)




~O  HAUIOHANBHUMA

& YHIBEPCUTET
KOPABJEBYAYBAHHSA
IMEHI AOMIPANTA MAKAPOBA

LET'S SEE THE CODE

risovach.ru




| IEVERREN S

You treat everything as an object, using a single
consistent syntax. Although you treat everything as
an object, the identifier you manipulate is actually a
“reference” to an object

You must create all the objects

When you create a reference, you want to connect
it with a new object. You do so, in general, with the
new operator:

String s = new String("asdf");

Scanner 1n = new Scanner (System.in) ;



IEVERREN [

Special case: primitive types
Java determines the size of each primitive type.

These sizes don’t change from one machine
architecture to another as they do in most languages.

This size invariance is one reason Java programs are
more portable than programs in most other languages.




~O  HAUIOHANBHUMA

K YHIBEPCUTET

m KOPABJIEBYAYBAHHS
IMEHI AMIPAJTA MAKAPOBA

Primitive types

Primitive Size Minimum | Maximum Wrapper type
type

boolean — — — Boolean
char 16 bits | Unicode 0 Unicode 216- 1 Character
byte 8 bits | -128 +127 Byte
short 16 bits | -215 +215-1 Short

int 32 bits | -231 +231-1 Integer
long 64 bits | -203 +263-1 Long
float 32 bits | IEEE754 IEEE754 Float
double 64 bits | IEEE754 IEEE754 Double
void — — — Void




Arrays in Java

e Java array is guaranteed to be initialized and
cannot be accessed outside of its range.

* The range checking comes at the price of
having a small amount of memory overhead
on each array as well as verifying the index
at run time, but the assumption is that the
safety and increased productivity are worth
the expense




Arrays in Java

* When you create an array of objects, you are
really creating an array of references, and
each of those references is automatically
initialized to a special value with its own
keyword: null

* You can also create an array of primitives.
Again, the compiler guarantees initialization
because it zeroes the memory for that array

Instrument[] ensemble = new Instrument[5];
int[] nums = new int[10];
double[] x = {0.1, -0.4, 0.6, 0.2};



Access modifiers

e Java provides access specifiers to allow the

|
C
T

orary creator to say what is available to the
ient programmer and what is not.
ne levels of access control from “most

access” to “least access” are public,

p

rotected, package access (which has no

keyword), and private.




~O  HAUIOHANBHUMA

oo Access modifiers

For members (fields and methods)

Modifiers Members
public Accessible everywhere.
protected Accessible by any class in the same package as its class, and

accessible only by subclasses of its class in other packages.

default (no modifier) Only accessible by classes, including subclasses, in the
same package as its class (package accessibility).

private Only accessible in its own class and not anywhere else.

For top-level types (Classes, Interfaces, Enums...)

Modifiers Top-Level Types
default (no modifier) Accessible in its own package (package accessibility)
public Accessible anywhere




HAUWIOHANBHUMA

YHIBEPCUTET

i Other access modifiers

For top-level types (Classes, Interfaces, Enums...)

Modifiers Classes Interfaces Enum types
abstract A non-final class can be declared Permitted, but  Not permitted.
abstract. redundant.

A class with an abstract method
must be declared abstract.

An abstract class cannot be
instantiated.

final A non-abstract class can be declared = Not permitted. = Not permitted.
final.
A class with a final method need not
be declared final.
A final class cannot be extended.




HAUWIOHANBHUMA
YHIBEPCUTET

KOPABJEBYAYBAHHSA
IMEHI ALMIPANTA MAKAPOBA

Other access modifiers

For members (fields and thods)

Modifiers Fields Methods
static Defines a class variable. Defines a class method.
final Defines a constant. The method cannot be overridden.
abstract Not applicable. No method body is defined. Its
class must also be designated
abstract.
synchronized Not applicable. Only one thread at a time can
execute the method.
native Not applicable. Declares that the method is
implemented in another language.
transient The value in the field will Not applicable.
not be included when the
object is serialized.
volatile The compiler will not Not applicable.

attempt to optimize access
to the value in the field.



~O  HAUIOHANBHUMA

& YHIBEPCUTET
KOPABJEBYAYBAHHSA
IMEHI AOMIPANTA MAKAPOBA

LET'S SEE THE CODE

risovach.ru




Questions?




MMMMMMMMMMMMMMMMMMM

Object-Oriented

Programming )
in the Java language S
in SUae ;""""/

Part 1. Introduction to Objects

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua



mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

