
Algorithms & Programming
Программирование на Kotlin

(p.5 – Arrays & Lists)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua

What is an array?

• An array is an ordered collection of values of the
same type.

• The elements in the array are zero-indexed,
which means the index of the first element is 0,
the index of the second element is 1, and so on.

There are sixteen elements in this array, at indices 0 - 15
All values are of type Int, so you can’t add non-Int types to an
array that holds integers. Notice that the same value can appear
multiple times.

When are arrays useful?

• Arrays are useful when you want to store your
items in a particular order.

• You may want the elements sorted, or you may
need to fetch elements by index without iterating
through the entire array.

• For example, if you were storing high score data,
then order would matter.

• You would want the highest score to come first in
the list (i.e. at index 0) with the next-highest
score after that, and so on.

Creating arrays

• The easiest way to create an array is by using a
function from the Kotlin standard library,
arrayOf().

• This is a concise way to provide array values.

val evenNumbers = arrayOf(2, 4, 6, 8)

• Since the array only contains integers, Kotlin infers the type of
evenNumbers to be an array of Int values.

• This type is written as Array<Int>. The type inside the angle
brackets defines the type of values the array can store, which
the compiler will enforce when you add elements to the array.

Creating arrays

• It’s also possible to create an array with all of
its values set to a default value:
val fiveFives = Array(5) { 5 } // 5, 5, 5, 5, 5

• As with any type, it’s good practice to declare
arrays that aren’t going to change as constants
using val. For example, consider this array:

val vowels = arrayOf("a", "e", "i", "o", "u")

vowels is an array of strings and its values can’t be changed.

Arrays of primitive types

• The Kotlin standard library contains functions
other than arrayOf() that make it possible to
create arrays that correspond to arrays of
primitive types. For example, you can create an
array of odd numbers as follows:

val oddNumbers = intArrayOf(1, 3, 5, 7)

• When running Kotlin on the JVM, the oddNumbers array is
compiled to a Java array of type int[].

Arrays of primitive types

• Other standard library functions include
floatArrayOf(), doubleArrayOf(), and
booleanArrayOf().

• These various functions create arrays of type
IntArray, FloatArray, DoubleArray, etc.

• You can also pass a number into the constructor
for these types, for example, to create an array of
zeros:

val zeros = DoubleArray(4) // 0.0, 0.0, 0.0, 0.0

Arrays of primitive types

• You can convert between the boxed and primitive
arrays using functions like toIntArray()

val otherOddNumbers = arrayOf(1, 3, 5, 7).toIntArray()

The type of otherOddNumbers is IntArray and not Array<Int>

Lists

• Arrays are typically more efficient than lists in
terms of raw performance, but lists have the
additional feature of being dynamically-sized.

• That is, arrays are of fixed-size, but lists can be
setup to grow and shrink as needed

Creating lists

• Like with arrays, the standard library has a
function to create a list.

val innerPlanets = listOf(
"Mercury",
"Venus",
"Earth",
"Mars")

• The type of innerPlanets is inferred to be List<String>,
with String being another example of a type argument.

• So innerPlanets can be passed into any function that needs
a List.

Creating lists

• If, for some reason, you explicitly want innerPlanets
to have the type ArrayList, there is a different
standard library function you can use

val innerPlanetsArrayList = arrayListOf(
"Mercury",
"Venus",
"Earth",
"Mars")

• innerPlanets can’t be altered once created.
• but innerPlanetsArrayList can
• An empty list can be created by passing no arguments into

list()

Creating lists

• Because the compiler isn’t able to infer a type
from this, you need to use a type declaration to
make the type explicit:

val subscribers: List<String> = listOf()

• You could also put the type argument on the
function:

val subscribers = listOf<String>()

• Since the list returned from listOf() is immutable, you won’t
be able to do much with this empty list.

• Empty lists become more useful as a starting point for a list
when they’re mutable.

Mutable lists

• Once again, the standard library has a function to
use here.

val outerPlanets = mutableListOf(
"Jupiter",
"Saturn",
"Uranus",
"Neptune")

You’ve made outerPlanets a mutable list, just in
case Planet X is ever discovered in the outer solar
system. You can create an empty mutable list by
passing no arguments to the function:
val exoPlanets = mutableListOf<String>()

Accessing elements

• Being able to create arrays and lists is useless
unless you know how to fetch values from them.

• The syntax is similar for both arrays and lists.

Using properties and methods

• Imagine you’re creating a game of cards, and
you want to store the players’ names in a list.

• The list will need to change as players join or
leave the game, so you need to declare a
mutable list:

val players = mutableListOf(
"Alice",
"Bob",
"Cindy",
"Dan")

Using properties and methods

• Before the game starts, you need to make sure there are
enough players. You can use
the isEmpty() method to check if there’s at least one player:

print(players.isEmpty())
// > false

The list isn’t empty, but you need at least two players to start a
game. You can get the number of players using the size property:

if (players.size < 2) {
println("We need at least two players!")

} else {
println("Let's start!")

}
// > Let's start!

Using properties and methods

• How would you get the first player’s name?

• Lists provide the first() method to fetch the first object of a
list:

var currentPlayer = players.first()
println(currentPlayer) // > Alice

If list is empty it will throw an exception.
Similarly, lists have a last() method that returns the last value in a
list, or throws an exception if the list is empty:

println(players.last()) // > Dan

Using properties and methods

• If the array contained strings, then it would
return the string that’s the lowest in alphabetical
order, which in this case is "Alice":

// val minPlayer = players.min() // before 1.4
val minPlayer = players.minOrNull() // since 1.4
println("$minPlayer will start")

• Instead of throwing an exception if no minimum
can be determined, min() returns a nullable type,
so you need to check if the value returned is null

• So, in new versions of Kotlin, it was deprecated.
• You should to use minOrNull() instead

Using properties and methods

• Obviously, first() and minOrNull() will not always
return the same value. For example:

println(arrayOf(2, 3, 1).first())
// > 2
println(arrayOf(2, 3, 1).minOrNull())
// > 1

As you might have guessed, lists also have a
maxOrNull() method (simple max() – before 1.4)

val maxPlayer = players.maxOrNull()
if (maxPlayer != null) {

println("$maxPlayer is the MAX") // > Dan is the MAX
}

Using indexing

• The most convenient way to access elements in
an array or list is by using the indexing syntax.

• This syntax lets you access any value directly by
using its index inside square brackets:

val firstPlayer = players[0]
println("First player is $firstPlayer")
// > First player is Alice

Because arrays and lists are zero-indexed, you use
index 0 to fetch the first object.

Using indexing

• You can use a greater index to get the next
elements in the array or list, but if you try
to access an index that’s beyond the size of the
array or list, you’ll get a runtime error.

val player = players[4] // > IndexOutOfBoundsException

• You receive this error because players contains
only four strings.

• Index 4 represents the fifth element, but there is
no fifth element in this list.

Using ranges to slice

• You can use the slice() method with ranges to
fetch more than a single value from an array
or list.

• For example, if you’d like to get the next two
players, you could do this:

val upcomingPlayersSlice = players.slice(1..2)
println(upcomingPlayersSlice.joinToString())
// > Bob, Cindy

The object returned from the slice() method is a separate array
or list from the original, so making modifications to the slice does
not affect the original array or list.

Checking for an element

• You can check if there’s at least one occurrence of
a specific element by using the in operator, which
returns true if it finds the element, and false
otherwise.

• You can use this strategy to write a function that
checks if a given player is in the game:

fun isEliminated(player: String): Boolean {
return player !in players

}

println(isEliminated("Bob")) // > false

players.slice(1..3).contains("Alice") // false

Modifying lists

• You can make all kinds of changes to mutable
lists, such as adding and removing elements,
updating existing values, and moving elements
around into a different order.

• Now we’ll see how to work with the list to match
up with what’s going on in your game.

Appending elements

• If new players want to join the game, they need
to sign up and add their names to the list.

• Eli is the first player to join the existing four
players. You can add Eli to the end of the array
using the add() method:

players.add("Eli")

The next player to join the game is Gina. You can
add her to the game another way, by using the +=
operator:

players += "Gina"

Appending elements

• While arrays are of fixed-size, you can in fact use
the += operator with an array that is declared as var

var array = arrayOf(1, 2, 3)
array += 4
println(array.joinToString()) // > 1, 2, 3, 4

But beware that you are not actually appending the
value onto the existing array, but instead creating
an entirely new array that has the additional
element and assigning the new array to the original
variable.

Inserting elements

• You want to add player with name Frank to the
list between Eli and Gina.

• To do that, you can use a variant of the add()
method that accepts an index as the first
argument:

players.add(5, "Frank")

The first argument defines where you want to add
the element. Remember that the list is zero-indexed,
so index 5 is Gina’s index, causing her to move up as
Frank takes her place.

Removing elements

• During the game, the other players caught Cindy
and Gina cheating. They should be removed from
the game!

• You can remove them by name using the
remove() method:

val wasPlayerRemoved = players.remove("Gina")
println("It is $wasPlayerRemoved that Gina was removed")
// > It is true that Gina was removed

This method does two things: It removes the element and then
returns a Boolean indicating whether the removal was successful,
so that you can make sure the cheater has been removed!

Removing elements

• To remove Cindy from the game, you need to
know the exact index where her name is stored.

• Looking at the list of players, you see that she’s
third in the list, so her index is 2.

• You can remove Cindy using removeAt()

val removedPlayer = players.removeAt(2)
println("$removedPlayer was removed")
// > Cindy was removed

Unlike remove(), removeAt() returns the element that was
removed from the list.
You could then add that element to a list of cheaters!

Finding element

• But how would you get the index of an element if
you didn’t already know it?

• There’s a method for that! indexOf() returns the
first index of the element, because the list might
contain multiple copies of the same value.

• If the method doesn’t find the element, it returns -1.

val indexOfDan = players.indexOf("Dan”)

Updating elements

• Frank has decided everyone should call him
Franklin from now on. You could remove the value
"Frank" from the list and then add "Franklin", but
that’s too much work for a simple task.

• Instead, you should use the indexing syntax to
update the name.

println(players.joinToString())
// > "Alice", "Bob", "Dan", "Eli", "Frank"
players[4] = "Franklin"
println(players.joinToString())
// > "Alice", "Bob", "Dan", "Eli", "Franklin"

Be careful to not use an index beyond the bounds of the list, or
your code will crash.

Updating elements

• As the game continues, some players are
eliminated, and new ones come to replace them.

• You can use indexing to replace the old players
with the new:

players[3] = "Anna"
players.sort()
println(players.joinToString())
// > "Alice", "Anna", Bob", "Dan", "Franklin

This code replaces the player Eli with the player Alice. You then
call sort() on the list to make sure the list remains sorted in
alphabetical order.

Iterating through a list

• Before the players leave, you want to print the
names of those still in the game.

• Like for arrays, you can do this using the for loop

for (player in players) {
println(player)

}
// > Alice
// > Anna
// > Bob
// > Dan
// > Franklin

Iterating through a list

• If you need the index of each element, you can
iterate over the return value of the list’s
withIndex() method, which can be destructed to
each element’s index and value:

for ((index, player) in players.withIndex()) {
println("${index + 1}. $player")

}
// > 1. Alice
// > 2. Anna
// > 3. Bob
// > 4. Dan
// > 5. Franklin

Iterating through a list

• It’s getting late, so the players decide to stop for
the night and continue tomorrow.

• In the meantime, you’ll keep their scores in a
separate list.

val scores = listOf(2, 2, 8, 6, 1)

Iterating through a list

val scores = listOf(2, 2, 8, 6, 1)

Now you can use the technique you’ve just learned
to write a function that takes a list of integers as its
input and returns the sum of its elements:
fun sumOfElements(list: List<Int>): Int {

var sum = 0
for (number in list) {

sum += number
}
return sum

}

You could use this function to calculate the sum of the players’ scores:

println(sumOfElements(scores)) // > 19

Let’s code!

Questions?

Algorithms & Programming
Программирование на Kotlin

(p.5 – Arrays & Lists)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua

