
Algorithms & Programming
Программирование на Kotlin

(p.4 – control flow, loops)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua



Loops

• Loops are Kotlin's way of executing code 
multiple times. In this lecture, you’ll learn 
about three types of loops: the while loop, the 
do-while loop, for loop.

• If you know another programming language, 
you’ll find the concepts and maybe even the 
syntax to be familiar.



While loop

• A while loop repeats a block of code while a 
condition is true. You create a while loop this 
way:

while (<CONDITION>) {
<LOOP CODE>

}



While loop

• The loop checks the condition for every 
iteration. 

• If the condition is true, then the loop executes 
and moves on to another iteration.

• If the condition is false, then the loop stops.
• Just like if expressions, while loops introduce a 

scope. 
• The simplest while loop takes this form:

while (true) {
}



While loop

• The simplest while loop takes this form:

while (true) {
}

• This is a while loop that never ends because the 
condition is always true. Of course, you would 
never write such a while loop, because your 
program would spin forever!

• This situation is known as an infinite loop, and 
while it might not cause your program to crash, 
it will very likely cause your computer to freeze.



While loop

• Here’s a more useful example of a while loop:

var sum = 1
while (sum < 1000) {

sum = sum + (sum + 1)
}

This code calculates a mathematical sequence, up 
to the point where the value is greater than 1000.

What value will be in sum variable after this code 
was executed?



Let’s code!



do-while loop

• A variant of the while loop is called the do-while 
loop. 

• It differs from the while loop in that the condition 
is evaluated at the end of the loop rather than at 
the beginning.

• You construct a do-while loop like this: 

do {
<LOOP CODE>

} while (<CONDITION>)



do-while loop

• Here’s the example from the last section, but 
using a do-while loop:

sum = 1
do {

sum = sum + (sum + 1)
} while (sum < 1000)

In this example, the outcome is the same as before. 
However, that isn’t always the case; you might get a 
different result with a different condition. 

Why? And when?



while vs do-while



Breaking out of a loop

• Sometimes you want to break out of a loop early.

• You can do this using the break statement, which 
immediately stops the execution of the loop and 
continues on to the code after the loop.

• For example, consider the following code: 

sum = 1
while (true) {

sum = sum + (sum + 1)
if (sum >= 1000) {

break
}

}



For loops

• This is probably the most common loop you’ll 
see, and you’ll use it to run code a certain 
number of times.

• You construct a for loop like this: 

for (<CONSTANT> in <RANGE>) {
<LOOP CODE>

}



For loops

• The loop begins with the for keyword, followed 
by a name given to the loop constant (more on 
that shortly), followed by in, followed by the 
range to loop through. Here’s an example: 

val count = 10
var sum = 0
for (i in 1..count) {

sum += i
}

In the code above, the for loop iterates through the range 1 to count. 
At the first iteration, i will equal the first element in the range: 1. 
Each time around the loop, i will increment until it’s equal to count; 
the loop will execute one final time and then finish.



Notes about for loop

• If you’d used a half-open range, the last iteration 
would see i equal to count - 1.

• In terms of scope, the i constant is only visible 
inside the scope of the for loop, which means 
it’s not available outside of the loop. 



repeat loop

• Sometimes you only want to loop a certain 
number of times, and so you don’t need to use 
the loop constant at all. 

• In that case, you can employ a repeat loop, like so: 

sum = 1
var lastSum = 0
repeat(10) {

val temp = sum
sum += lastSum
lastSum = temp

}



for loops

• It’s also possible to only perform certain 
iterations in the range. 

• For example, imagine you wanted to compute a 
sum similar to that of triangle numbers, but only 
for odd numbers: 

sum = 0
for (i in 1..count step 2) {

sum += i
}



for loops

sum = 0
for (i in count downto 1 step 2) {

sum += i
}

• You can even count down in a for loop using 
downTo. 

• In this case if count is 10 then the loop will iterate 
through the following values (10, 8, 6, 4, 2).



continue statement

• Sometimes you’d like to skip a loop iteration for a 
particular case without breaking out of the loop 
entirely. 

• You can do this with the continue statement, 
which immediately ends the current iteration of 
the loop and starts the next iteration. 

• The continue statement gives you a higher level 
of control, letting you decide where and when 
you want to skip an iteration. 



Let’s code!



Questions?



Algorithms & Programming

Программирование на Kotlin
(p.4 - control flow, loops)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua


