
Algorithms & Programming
Программирование на Kotlin

(p.3 – control flow)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua

But before we start…

• Flowcharts – what are they?
fun main() {

println("Hello World!")
}

Flowcharts

fun main() {
print("Enter your name:")
var name = readln()

println("Hello $name!")
}

Flowcharts

fun main() {
val (a,b) = readln().split(" ").map { it.toDouble() }

val c = a + b

println("$a + $b = $c")
}

fun main() {
val (a,b) = readln()

.split(" ")

.map { it.toDouble() }

val c = a + b

println("$a + $b = $c")
}

Flowcharts

import kotlin.math.sin

fun main() {
val (a,b) = readln()

.split(" ")

.map { it.toDouble() }

val s = sumOfSinuses(a, b)

println("sum of sinuses = $s")
}

fun sumOfSinuses(
a: Double,
b: Double): Double {

return sin(a) + sin(b)
}

Control flow

• When writing a computer program, you need
to be able to tell the computer what to do in
different scenarios.

• For example, a calculator app would need to
do one thing if the user tapped the addition
button and another thing if the user tapped
the subtraction button

In computer-programming terms, this concept is
known as control flow.

Comparison operators

• When you perform a comparison, such as
looking for the greater of two numbers, the
answer is either true or false.

• Kotlin has a data type just for this! It’s called a
Boolean

• This is how you use a Boolean in Kotlin:
val yes: Boolean = true
val no: Boolean = false

val yes = true
val no = false

And because of Kotlin's type inference, you can leave off the type annotation:

Boolean operators

• Booleans are commonly used to compare
values. For example, you may have two values
and you want to know if they’re equal: either
they are (true) or they aren’t (false).

• In Kotlin, you do this using the equality operator,
which is denoted by ==:

val doesOneEqualTwo = (1 == 2) // false

Similarly, you can find out if two values are not equal using the != operator:

val doesOneNotEqualTwo = (1 != 2) // true

Boolean operators

• The prefix ! operator, also called the not-
operator, toggles true to false and false to
true. Another way to write the above is:

val alsoTrue = !(1 == 2)

• Two more operators let you determine if a
value is greater than (>) or less than (<)
another value. You’ll likely know these from
mathematics:

val isOneGreaterThanTwo = (1 > 2)
val isOneLessThanTwo = (1 < 2)

Boolean operators

• There’s also an operator that lets you test if a
value is less than or equal to another value: <=.

• It’s a combination of < and ==, and will therefore
return true if the first value is either less than the
second value or equal to it.

• Similarly, there’s an operator that lets you test if a
value is greater than or equal to another — you
may have guessed that it’s >=.

Boolean logic

• One way to combine conditions is by using AND.

• When you AND together two Booleans, the
result is another Boolean.

• If both input Booleans are true, then the
result is true. Otherwise, the result is false.

val and = true && true

In this case, and will be true.
If either of the values on the right was false, then
and would be false.

Boolean logic

• Another way to combine conditions is by using OR.

• When you OR together two Booleans, the result
is true if either of the input Booleans is true.

• Only if both input Booleans are false will the
result be false.

val or = true || false

In this case, or will be true. If both values on the
right were false, then or would be false. If both
were true, then or would still be true.

Boolean logic

• In Kotlin, Boolean logic is usually applied to
multiple conditions.

• Maybe you want to determine if two
conditions are true; in that case, you’d use
AND.

• If you only care about whether one of two
conditions is true, then you’d use OR.

• For example, consider the following code:
val andTrue = 1 < 2 && 4 > 3
val andFalse = 1 < 2 && 3 > 4
val orTrue = 1 < 2 || 3 > 4
val orFalse = 1 == 2 || 3 == 4

Boolean logic

• It’s also possible to use Boolean logic to
combine more than two comparisons.

• For example, you can form a complex
comparison like so:

val andOr = (1 < 2 && 3 > 4) || 1 < 4

The parentheses disambiguates the expression.
First Kotlin evaluates the subexpression inside the parentheses,
and then it evaluates the full expression, following these steps:

1. (1 < 2 && 3 > 4) || 1 < 4
2. (true && false) || true
3. false || true
4. true

Short circuit

• What about evaluation of this expression?

val orAnd = 1 < 4 || (1 < 2 && 3 > 4)

After evaluating first subexpression, it’s not need to evaluate last one,
because all result is determined. This called “short-circuit evaluation”

String equality

• Sometimes you want to determine if two strings
are equal.

• For example, a children’s game of naming an
animal in a photo would need to determine if the
player answered correctly.

• In Kotlin, you can compare strings using the
standard equality operator “==“ in exactly the
same way as you compare numbers. For example:

val guess = "dog"
val dogEqualsCat = guess == "cat"

String comparision

• Just as with numbers, you can compare not
just for equality, but also to determine if one
value is greater than or less that another
value. For example:

val order = "cat" < "dog"

• This syntax checks if one string comes before
another alphabetically.

• In this case, order equals true because "cat"
comes before "dog".

The if expression

• The first and most common way of controlling
the flow of a program is through the use of an
if expression, which allows the program to do
something only if a certain condition is true.

• For example, consider the following:

if (2 > 1) {
println("Yes, 2 is greater than 1")

}

The term if expression is used here instead of if statement, since,
unlike many other programming languages, a value is returned
from the if expression. The value returned is the value of the last
expression in the if block.

The if expression

The if expression

• You can extend an if expression to provide
code to run in case the condition turns out to
be false.

• This is known as the else clause. Here’s an
example:

val animal = "Fox"
if (animal == "Cat" || animal == "Dog") {

println("Animal is a house pet.")
} else {

println("Animal is not a house pet.")
}

Animal is not a house pet.

The if expression

The if expression

• You can also use an if-else
expression on one line.

• If you wanted to determine
the minimum and maximum of
two variables, you could use if
expressions like so:

val a = 5
val b = 10
val min: Int
if (a < b) {

min = a
} else {

min = b
}
val max: Int
if (a > b) {

max = a
} else {

max = b
}

val a = 5
val b = 10
val min = if (a < b) a else b
val max = if (a > b) a else b

The if expression

• Sometimes you want to check one condition,
then another. This is where else-if comes into
play, nesting another if clause in the else
clause of a previous if clause.

• You can use else-if like so:

The if expression

• You can use else-if like so:
val hourOfDay = 12
val timeOfDay = if (hourOfDay < 6) {

"Early morning"
} else if (hourOfDay < 12) {

"Morning"
} else if (hourOfDay < 17) {

"Afternoon"
} else if (hourOfDay < 20) {

"Evening"
} else if (hourOfDay < 24) {

"Late evening"
} else {

"INVALID HOUR!"
}
println(timeOfDay)

Short circuiting

• An important fact about if expressions and the
Boolean operators is what happens when
there are multiple Boolean conditions
separated by ANDs (&&) or ORs (||).

• Consider the following code:
if (1 > 2 && name == "Ivan Ivanov") {

// ...
}

• The first condition of the if expression, 1 > 2 is false.
• Therefore the whole expression cannot ever be true.
• So Kotlin will not even bother to check the second part of the

expression, namely the check of name.

Short circuiting

• Similarly, consider the following code:
if (1 < 2 || name == "Ivan Ivanov") {

// ...
}

• Since 1 < 2 is true, the whole expression must be true as well.
• Therefore once again, the check of name is not executed.
• This will come in handy later on when you start dealing with

more complex data types.

Encapsulating variables

• if expressions introduce a new concept scope,
which is a way to encapsulate variables through
the use of braces.

• Imagine you want to calculate the fee to charge
your client. Here’s the deal you’ve made:

You earn $25 for every hour up to 40 hours, and $50 for every hour thereafter.

Encapsulating variables

• Imagine you want to calculate the fee to
charge your client. Here’s the deal you’ve
made:

You earn $25 for every hour up to 40 hours, and $50 for every hour thereafter.

Using Kotlin, you can calculate your fee in this way:

var hoursWorked = 45
var price = 0
if (hoursWorked > 40) {

val hoursOver40 = hoursWorked - 40
price += hoursOver40 * 50
hoursWorked -= hoursOver40

}
price += hoursWorked * 25
println(price)

Encapsulating variables

• The interesting thing here is the code inside the if
expression. There is a declaration of a new constant,
hoursOver40, to store the number of hours over 40.

• Clearly, you can use it inside the if statement. Since 1 < 2
is true, the whole expression must be true as well.

• Therefore once again, the check of name is not
executed.

• This will come in handy later on when you start dealing
with more complex data types. But what happens if
you try to use it at the end of the above code?

println(price)
println(hoursOver40)

This would result in the following error:

Unresolved reference: 'hoursOver40'

when expressions

• You can also control flow via the when
expression. It executes different code
depending on the value of a variable or
constant.

• Here’s a when expression that acts on an
integer: val number = 10

when (number) {
0 -> println("Zero")
else -> println("Non-zero")

}

In this example, the code will print the following:
Non-zero

when expressions

• when expressions also work with data types
other than integers.

• Here’s an example using a string:
val string = "Dog"
when (string) {

"Cat", "Dog" -> println("Animal is a house pet.")
else -> println("Animal is not a house pet.")

}

This will print the following: Animal is a house pet.

Returning values

• If you want to determine the name of the
number, you can assign the value with a when
expression as follows:

val numberName = when (number) {
2 -> "two"
4 -> "four"
6 -> "six"
8 -> "eight"
10 -> "ten"
else -> {

println("Unknown number")
"Unknown"

}
}
println(numberName) // > ten

Advanced when expressions

• In the one of previous slides, you saw an if
expression that used multiple else clauses to
convert an hour of the day to a string
describing that part of the day.

• You could rewrite that more succinctly with a
when expression

Advanced when expressions

val hourOfDay = 12
val timeOfDay: String
timeOfDay = when (hourOfDay) {

0, 1, 2, 3, 4, 5 -> "Early morning"
6, 7, 8, 9, 10, 11 -> "Morning"
12, 13, 14, 15, 16 -> "Afternoon"
17, 18, 19 -> "Evening"
20, 21, 22, 23 -> "Late evening"
else -> "INVALID HOUR!"

}
println(timeOfDay)

Ranges

• Before you dive into the when expression, you
need to know about the range data types,
which let you represent a sequence of
countable integers.

• Let’s look at two types of ranges.

• First, there’s a closed range, which you
represent like so:

val closedRange = 0..5

The two dots (..) indicate that this range is closed, which means the
range goes from 0 to 5 inclusive. That’s the numbers (0, 1, 2, 3, 4, 5).

Ranges

• Second, there’s a half-open range, which you
represent like so:

val halfOpenRange = 0 until 5

• Here, you replace the two dots with until. Half-
open means the range goes from 0 up to, but not
including, 5. That’s the numbers (0, 1, 2, 3, 4).

• Open and half-open ranges created with the ..
and until operators are always increasing.

• In other words, the second number must always
be greater than or equal to the first.

Ranges

• To create a decreasing range, you can use
downTo, which is inclusive:

val decreasingRange = 5 downTo 0

• That will include the numbers (5, 4, 3, 2, 1, 0).
• Ranges are commonly used in both:

₋ when expressions and
₋ for loops

Advanced when expressions

• Well, you can use ranges to simplify this when
expression. You can rewrite the above code
using ranges:

timeOfDay = when (hourOfDay) {
in 0..5 -> "Early morning"
in 6..11 -> "Morning"
in 12..16 -> "Afternoon"
in 17..19 -> "Evening"
in 20..23 -> "Late evening"
else -> "INVALID HOUR!"

}

Let’s code!

Questions?

Algorithms & Programming
Программирование на Kotlin

(p.3 – control flow)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua

	Slide 1: Algorithms & Programming
	Slide 2: But before we start…
	Slide 3: Flowcharts
	Slide 4: Flowcharts
	Slide 5: Flowcharts
	Slide 6: Control flow
	Slide 7: Comparison operators
	Slide 8: Boolean operators
	Slide 9: Boolean operators
	Slide 10: Boolean operators
	Slide 11: Boolean logic
	Slide 12: Boolean logic
	Slide 13: Boolean logic
	Slide 14: Boolean logic
	Slide 15: Short circuit
	Slide 16: String equality
	Slide 17: String comparision
	Slide 18: The if expression
	Slide 19: The if expression
	Slide 20: The if expression
	Slide 21: The if expression
	Slide 22: The if expression
	Slide 23: The if expression
	Slide 24: The if expression
	Slide 25: Short circuiting
	Slide 26: Short circuiting
	Slide 27: Encapsulating variables
	Slide 28: Encapsulating variables
	Slide 29: Encapsulating variables
	Slide 30: when expressions
	Slide 31: when expressions
	Slide 32: Returning values
	Slide 33: Advanced when expressions
	Slide 34: Advanced when expressions
	Slide 35: Ranges
	Slide 36: Ranges
	Slide 37: Ranges
	Slide 38: Advanced when expressions
	Slide 39: Let’s code!
	Slide 40
	Slide 41: Algorithms & Programming

