
Algorithms & Programming
Программирование на Kotlin

(p.2 - functions)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua

Functions

• Functions are a core part of many
programming languages.

• A function lets you define a block of code that
performs a task.

• Then, whenever your app needs to execute
that task, you can run the function instead of
having to copy and paste the same code
everywhere.

Function basics

• Imagine you have an app that frequently needs to print your
name.

• You can write a function to do this:

fun printMyName() {
println("My name is Eugeny")

}

The code above is known as a function declaration. You define a function
using the fun keyword.

With your function defined, you can use it like so:

printMyName()

This prints out the following: My name is Eugeny

Function parameters

• Sometimes you want to parameterize your function,
which lets the function perform differently
depending on the data passed into it via its
parameters.

• As an example, consider the following function:

fun printMultipleOfFive(value: Int) {
println("$value * 5 = ${value * 5}")

}

printMultipleOfFive(10)

And after declaring it, you can use this function, as shown here:

Function parameters

• In any function, the parentheses contain
what’s known as the parameter list.

• These parentheses are required both when
declaring and when invoking the function,
even if the parameter list is empty.

• In the example, you call the function with an
argument of 10

So, as result, you can see: 10 * 5 = 50

Function parameters

• Take care not to confuse the terms
“parameter” and “argument”.

• A function declares its parameters in its
parameter list.

• When you call a function, you provide values
as arguments for the functions parameters.

Function parameters

You can take this one step further and make the
function more general. With two parameters, the
function can print out a multiple of any two values.

fun printMultipleOf(multiplier: Int, andValue: Int) {
println("$multiplier * $andValue = ${multiplier * andValue}")

}

printMultipleOf(4, 2)

Than you can call it with line

There are now two parameters inside the parentheses after the
function name: one named multiplier and the other named
andValue, both of type Int

Named arguments

• Sometimes it is helpful to use named
arguments when calling a function to make it
easier to understand the purpose of each
argument

printMultipleOf(multiplier = 4, andValue = 2)

This is especially helpful when a function has several parameters

Default values

• You can also give default values to parameters:

fun printMultipleOf(multiplier: Int, value: Int = 1) {
println("$multiplier * $value = ${multiplier * value}")

}

printMultipleOf(4)

The difference is the = 1 after the second parameter, which
means that if no value is provided for the second parameter, it
defaults to 1.
Therefore, this code prints the following: 4 * 1 = 4

Return values

• You can use a function to manipulate data.
You simply take in data through parameters,
manipulate it and then return it.

• Here’s how you define a function that returns
a value:
fun multiply(number: Int, multiplier: Int): Int {

return number * multiplier
}

Inside the function, you use a return statement to return the value.
In this example, you return the product of the two parameters.

Using of Pair

• It’s also possible to return multiple values
through the use of Pairs:

fun multiplyAndDivide(number: Int, factor: Int): Pair<Int, Int> {
return Pair(number * factor, number / factor)

}

val (product, quotient) = multiplyAndDivide(4, 2)

This function returns both the product and quotient of
the two parameters by returning a Pair containing two
Int values.

Function in expression

• If a function consists solely of a single
expression, you can assign the expression to
the function using = while at the same time
not using braces, a return type, or a return
statement:

fun multiplyInferred(number: Int, multiplier: Int) =
number * multiplier

In such a case, the type of the function return value is inferred to

be the type of the expression assigned to the function.

Parameters as values

• Function parameters are constants by default,
which means they can’t be modified.

fun incrementAndPrint(value: Int) {
value += 1
print(value)

}

val cannot be reassigned

And result will be:

Parameters as values

• If you want a function to alter a parameter
and return it, you must do so indirectly by
declaring a new variable like so:

fun incrementAndPrint(value: Int): Int {
val newValue = value + 1
println(newValue)
return newValue

}

Overloading

• What if you want more than one function with
the same name?

fun getValue(value: Int): Int {
return value + 1

}

fun getValue(value: String): String {
return "The value is $value"

}

This is called overloading and lets you define similar functions
using a single name.

Overloading

• The compiler must still be able to tell the
difference between these functions within a
given scope.

• Whenever you call a function, it should always
be clear which function you’re calling.

• This is usually achieved through a difference in
the parameter list:
– A different number of parameters.

– Different parameter types.

Note: The return type alone is not enough to distinguish two functions.

Functions as variables

• Functions in Kotlin are simply another data type.

• You can assign them to variables and constants
just as you can any other type of value, such as
an Int or a String.

fun add(a: Int, b: Int): Int {
return a + b

}

This function takes two parameters and returns the sum of their values.
You can assign this function to a variable using the method reference
operator, ::, like so:

var function = ::add

Functions as variables

• The fact that you can assign functions to
variables comes in handy because it means
you can pass functions to other functions.

• Here’s an example of this in action:
fun printResult(function: (Int, Int) -> Int, a: Int, b: Int) {

val result = function(a, b)
print(result)

}

printResult(::add, 4, 2)

Writing good functions

• The best (easiest to use and understand)
functions do one simple task rather than trying to
do many.

• This makes them easier to mix and match and
assemble into more complex behaviors.

• Good functions also have a well defined set of
inputs that produce the same output every time.

• This makes them easier to reason about and test
in isolation.

Let’s code!

Questions?

Algorithms & Programming
Программирование на Kotlin

(p.2 - functions)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua

