
Algorithms & Programming

Программирование на Kotlin

(p.1 - basics)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua

Computers – for what?

A computer is a universal machine –
one machine that serves many purposes.

Computers:

• Make calculations

• Can store a huge amount of information

• allow the exchange of information, regardless
of location …

What is programming?

Programming today – is a race
between software engineers
striving to build bigger and better
idiot-proof programs, and the
Universe trying to produce bigger
and better idiots.

So far, the Universe is winning

How a computer works

• Did you know that computer is not very smart
on its own ?

• The power of computers is all derived from
how they’re programmed by people

• If you want to successfully harness the power
of a computer…

• … it’s important to understand how
computers work

How a computer works

• At the heart of a computer is a Central Processing Unit

(CPU). This is essentially a math machine.

• It performs addition, subtraction, and other arithmetical
operations on numbers.

How a computer works

• The CPU stores the numbers it acts upon in small memory
units called registers.

• The CPU is able to read numbers into registers from the
computer’s main memory, known as Random Access Memory (RAM)

• It’s also able to write the number stored in a register back into RAM.

How computer works

• Each time the CPU makes an addition, a subtraction, a
read from RAM or a write to RAM, it’s executing a
single instruction.

• Each computer program is usually made up of
thousands to millions of instructions.

• A complex computer program such as your operating
system, be it iOS, Android, macOS, Windows or Linux
(yes, they’re computer programs too!), may have many
millions of instructions in total.

Programming languages

• It’s entirely possible to write individual
instructions to tell a computer what to do, but
for all but the simplest programs, it would be
immensely time-consuming and tedious.

• This is because most computer programs aim
to do much more than simple math —
computer programs let you surf the internet,
manipulate images, and allow you to chat with
your friends.

Programming languages

• Instead of writing individual instructions, you
write code in a specific programming language,
which in our case will be Kotlin.

• This code is put through a computer program
called a compiler, which converts the code into
instructions the CPU knows how to execute.

• Each line of code you write will turn into many
instructions — some lines could end up being
tens of instructions!

Compiling

• In the case of Kotlin, with its origins as a
language on the Java Virtual Machine or JVM,
there is an extra layer between the compiler
and the OS.

• The Kotlin compiler creates what is known as
bytecode, which gets run on the JVM and
converted to native code along the way. Kotlin
began on the JVM but now it is possible to
compile Kotlin directly to native code

About Kotlin

• Kotlin – is new programming language
– Kotlin v1.0 was released on 15 February 2016. The name comes from Kotlin Island,

near St. Petersburg.

• Kotlin – is compiling language
– Kotlin is compiling to a Java-bytecode, that makes it cross-platform

• Kotlin – is statically typed language

• Kotlin realized many paradigms:
– Kotlin realizes procedural, generified, objective-oriented, functional and other

paradigms…

• Kotlin works on top of JVM
– In Kotlin you can use Java libraries and it works!

And we will learn that all stuff?

IDE

• In this course we’ll create Kotlin projects is
IntelliJ IDEA from JetBrains.

• JetBrains is also the company behind the
Kotlin language itself, so Kotlin development is
very tightly integrated into IntelliJ IDEA.

IntelliJ IDEA

• IntelliJ IDEA is an Integrated Development Environment, or

IDE, and is similar to other IDEs such as Visual Studio and

Xcode

• IntelliJ IDEA provides the foundation of many other IDEs

from JetBrains, including Android Studio for Android app

development, PyCharm for Python programming and CLion

for C and C++ programming.

• You use an IDE to write code in an editor, compile the code

into a form that can be run on your computer, see output

from your program, fix issues in your code and much more!

IntelliJ IDEA

Getting started with Kotlin

• The Kotlin compiler generates bytecode or
executable code from your source code.

• To accomplish this, it uses a detailed set of
rules you will learn about in this course

• Sometimes these details can obscure the big
picture of why you wrote your code a certain
way or even what problem you are solving.

• What can we do with this?

Comments

• Kotlin, like most other programming
languages, allows you to document your code
through the use of what are called comments.

• These allow you to write any text directly
along side your code which is ignored by the
compiler.

• The first way to write a comment is like so:

// This is a comment. It is not executed

This is a single line comment

Comments

You could stack these up like so to allow you to write
paragraphs:

// This is also a comment.
// Over multiple lines.

However, there is a better way to write comments which
span multiple lines. Like so:

/* This is also a comment.
Over many..
many...
many lines. */

This is a multi-line comment.
The start is denoted by /*
and the end is denoted by */.

Nested comments

• Kotlin also allows you to nest comments, like so:

/* This is a comment.
/* And inside it
is
another comment.
*/
Back to the first.
*/

This might not seem particularly interesting, but it may be if you have seen other
programming languages. Many do not allow you to nest comments like this

Printing out

• It’s also useful to see the results of what your
code is doing.

• In Kotlin, you can achieve this through the use
of the println command.

• println will output whatever you want to the
console.

For example, consider the following code:

println("Hello from Kotlin!")

Printing out

Arithmetic operations

• When you take one or more pieces of data
and turn them into another piece of data,
this is known as an operation.

• All operations in Kotlin use a symbol known as
the operator to denote the type of operation
they perform.

• Consider the four arithmetic operations you
learned in your early school days: addition,
subtraction, multiplication and division.

Arithmetic operations

• For these simple operations, Kotlin uses the
following operators:
• Add: +
• Subtract: -
• Multiply: *
• Divide: /
These operators are used like so:

2 + 6
10 - 2
2 * 4
24 / 3

Printing & Arithmetic

Decimal numbers

• All of the operations above have used whole
numbers, more formally known as integers.

• However, as you know, not every number is
whole.

• As an example, consider the following:

22 / 7

22.0 / 7.0

This, you may be surprised to know, results in the number 3. This is

because if you only use integers in your expression, Kotlin makes the

result an integer also.

This time, the result is 3.142857142857143 as expected

The remainder operation

• Kotlin also has more complex operations you can use,
all of them standard mathematical operations, just less
common ones.

• The first of these is the remainder operation, also
called the modulo operation.

• In division, the denominator goes into the numerator a
whole number of times, plus a remainder.

• In Kotlin, the remainder operator is the % symbol, and
you use it like so:

28 % 10

In this case, the result equals 8, because 10 goes into 28 twice with a

remainder of 8.

Shift operations

• The Shift left and Shift right operations take
the binary form of a decimal number and shift
the digits left or right, respectively.

• Then they return the decimal form of the new
binary number.

• For example, the decimal number 14 in binary,
padded to 8 digits, is 00001110. Shifting this
left by two places results in 00111000, which
is 56 in decimal.

Shift operations

• Here’s an illustration of what happens during
this shift operation:

The digits that come in to fill the empty spots on the right become 0.

The digits that fall off the end on the left are lost. Shifting right is the
same, but the digits move to the right.

Shift operations

The Kotlin functions for these two operations
are as follows:

• Shift left: shl

• Shift right: shr

These are infix functions that you place in
between the operands so that the function call
looks like an operation:

1 shl 3
32 shr 2

Order of operations

When you calculate a value, you’ll want to use
multiple operators:

Parentheses in Kotlin serve two purposes: to make
it clear to anyone reading the code — including
yourself — what you meant, and to
disambiguate.
For example, consider the following:

(((12000 / (4 * 10)) - 32) shr (29 % 5)) + 26

20 + 350 / 5

What is the value of it?

Order of operations (1/2)
Order Operation Associativity Description

1 [] left-to-right Index operation

() parentheses

. Accessing to class (object) member

2 ++ left-to-right Postfix increment

-- Postfix decrement

3 ++ right-to-loft Prefix increment

-- Prefix decrement

4 * left-to-right Multiplying

/ Division

% Remainder

5 + left-to-right Addition

— Subtraction

Order of operations (2/2)
Order Operation Associativity Description

6 shr left-to-right Shift to right

shl Shift to left

7 < left-to-right Less than

<= Less or equals

> Greater than

>= Greater or equals

8 == left-to-right Equals

!= Not equals

9 && left-to-right logical AND

10 || left-to-right logical OR

11 = right-to-left assignment

*= Multiply and assign

/= Division and assign

%= Remainder and assign

+= Addition and assign

-= Subtraction and assign

13 , left-to-right comma

Math functions

• Kotlin also has a vast range of math functions
in it’s standard library for you to use when
necessary.

• You never know when you need to pull out
some trigonometry, especially when you’re a
pro at Kotlin and writing those complex
games!

Math functions

• For example, consider the following:

sin(45 * PI / 180)
// 0.7071067811865475
cos(135 * PI / 180)
// -0.7071067811865475

Notice how both make use of PI which is a constant Kotlin provides us,

ready-made with 𝜋 to as much precision as is possible by the

computer

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.math/

sqrt(2.0)
// 1.414213562373095

max(5, 10)
// 10
min(-5, -10)
// -10

max(sqrt(2.0), PI / 2)
// 1.570796326794897

Full list:

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.math/

Naming data

• In your Kotlin code, you can give each piece of data a

name you can use to refer to it later.

• The name carries with it an associated type that

denotes what sort of data the name refers to, such as
text, numbers, or a date

There are two kinds of data in Kotlin:
• Constants
• Variables

Constants

val number: Int = 10

This uses the val keyword to declare a constant called

number which is of type Int.

Then it sets the value of the constant to the number 10.

The type Int can store integers. The way you store

decimal numbers is like so:

val pi: Double = 3.14159

This time, the constant is a Double, a type that can store

decimals with high precision.

There’s also a type called Float, short for floating point, that stores

decimals with lower precision than Double

Variables

• When you know you’ll need to change some data,
you should use a variable to represent that data
instead of a constant.

• You declare a variable in a similar way, like so:

var variableNumber: Int = 42

• Once you’ve declared a variable, you’re free to
change it to whatever you wish, as long as the type
remains the same.

• For example, to change the variable declared
above, you could do this:

variableNumber = 0
variableNumber = 1_000_000

Using variables

fun main() {
 print("Input a number:")
 val x = readln().toInt()
 println("Your number is $x")
}

Using meaningful names

Good names can act as documentation and
make your code easy to read.

A good name specifically describes the role of
variable or constant. Here are some examples of
good names:

• personAge

• numberOfPeople

• gradePointAverage

Using meaningful names

Often a bad name is simply not descriptive enough. Here

are some examples of bad names:

• a

• temp

• average

The key is to ensure that you’ll understand what the

variable or constant refers to when you read it again later.

In Kotlin, it is common to camel case names.

Camel Case

For variables and constants, follow these rules to properly

case your names:

• Start with a lowercase letter.

• If the name is made up of multiple words, join them

together and start every other word with an uppercase

letter.

• If one of these words is an abbreviation, write the entire

abbreviation in the same

case (e.g., sourceURL and urlDescription)

Increment and decrement

• A common operation that you will need is to be able to
increment or decrement a variable.

• In Kotlin, this is achieved like so:

var counter: Int = 0
counter += 1
// counter = 1
counter -= 1
// counter = 0

var counter: Int = 0
counter = counter + 1
counter = counter - 1

Demo

Questions?

Algorithms & Programming

(p.1 - basics)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua

	Slide 1: Algorithms & Programming
	Slide 2: Computers – for what?
	Slide 3: What is programming?
	Slide 4: How a computer works
	Slide 5: How a computer works
	Slide 6: How a computer works
	Slide 7: How computer works
	Slide 8: Programming languages
	Slide 9: Programming languages
	Slide 10: Compiling
	Slide 11: About Kotlin
	Slide 12: And we will learn that all stuff?
	Slide 13: IDE
	Slide 14: IntelliJ IDEA
	Slide 15: IntelliJ IDEA
	Slide 16: Getting started with Kotlin
	Slide 17: Comments
	Slide 18: Comments
	Slide 19: Nested comments
	Slide 20: Printing out
	Slide 21: Printing out
	Slide 22
	Slide 23: Arithmetic operations
	Slide 24: Arithmetic operations
	Slide 25: Printing & Arithmetic
	Slide 26: Decimal numbers
	Slide 27: The remainder operation
	Slide 28: Shift operations
	Slide 29: Shift operations
	Slide 30: Shift operations
	Slide 31: Order of operations
	Slide 32: Order of operations (1/2)
	Slide 33: Order of operations (2/2)
	Slide 34: Math functions
	Slide 35: Math functions
	Slide 36: Naming data
	Slide 37: Constants
	Slide 38: Variables
	Slide 39: Using variables
	Slide 40: Using meaningful names
	Slide 41: Using meaningful names
	Slide 42: Camel Case
	Slide 43: Increment and decrement
	Slide 44: Demo
	Slide 45
	Slide 46: Algorithms & Programming

