
Algorithms & Programming
Programming Basics

С/С++/Kotlin programming

(p.8 – Dynamic Memory Management)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua



Why memory management?

• We can create arrays of the desired size by 
specifying the size in square brackets

• You can always create an array "with a margin“ 
For example:

char c[1000];

Or:

int z[100000];



Why memory management?

• One or two arrays – it’s OK, but what if … 1000?
• But most of them will be empty!



What can we do?

• You can use dynamic memory allocation.

• For example, you can use the abstract data 
structure "linear linked list"



What can we do?

• You can use dynamic memory allocation.

• For example, you can use the abstract data 
structure "linear linked list"

NULL

NULL



Linear linked list

What does it look like?

• You can use dynamic memory allocation.

• For example, you can use the abstract data 
structure "linear linked list"

NULL

NULL



This was supposed to be a picture of a train.
But, I think, this one is better☺



Linear linked list

Types of Linked Lists:

NULL

NULL

Every element contains a pointer to next

Every element contains a pointer to previous

Doubly linked list



Did you got it?



Let’s code!

Let's declare a new type - the structure of the list element:

Now, to build a linear list, we can use a variable 
of this type:

element * head = nullptr;

struct element {

int x;

element * next;

};





Stack

void push(int value) {
auto * t = new element;
t->x = value;
t->next = head;
head = t;

}

int pop() {
element * t = head;
head = head->next;
int v = t->x;
delete t;
return v;

}

bool isEmpty() {
return head == nullptr;

}





Types of Lists

• A stack is a linear data structure that follows 
the Last-In-First-Out (LIFO) principle, where 
the last element inserted into the stack is the 
first one to be removed. 

• Most often, the principle of the stack is 
compared with a stack of plates: in order to 
take the second from the top, you need to 
remove the top one.



Stack

A stack can be thought of as a collection of elements, 
with two main operations:

• push(): Adds an element to the top of the stack.

• pop(): Removes the element at the top of the stack.

Additional operations that may be supported by a stack 
include:

• peek()/top(): Returns the element at the top of the 
stack without removing it.

• size(): Returns the number of elements in the stack.

• empty(): Returns whether the stack is empty or not.



Types of Lists

• A queue is a linear data structure that follows 
the First-In-First-Out (FIFO) principle, where 
the first element inserted into the queue is 
the first one to be removed. 

Adding an element is possible only to the end of 
the queue, selecting only from the beginning of 
the queue, while the selected element is 
removed from the queue.



Queue

A queue can be thought of as a collection of elements, 
with two main operations:

• offer(): Adds an element to the back of the queue.

• pull(): Removes the element at the front of the queue.

Additional operations that may be supported by a queue 
include:

• front(): Returns the element at the front of the queue 
without removing it.

• size(): Returns the number of elements in the queue.

• empty(): Returns whether the queue is empty or not.





Queue

int pull() {
element * t = head;
head = head->next;
int v = t->x;
delete t;
return v;

}

void offer(int value) {
auto * t = new element;
t->x = value;
t->next = nullptr;
if (head == nullptr) {

tail->next = t;
} else

head = t;
tail = t;

}



Linear linked lists

Do you remember...?



Basic list tasks

1. Find the given element (pointer to it)

2. Add element after the given one

3. Add element before the given one

4. Delete the given element

5. Remove element after given one



1. Find the given element (pointer to it)

element * find(element * head, int value) {
element * t;
t = head;
while (t) {

if (t->x == value) {
break;

} else {
t = t->next;

}
}
return t;

}





2. Add element after given one

void addAfter(element * f, int value) {
//1
element * t = new element;
t->x = value;
//2
t->next = f->next;
//3
f->next = t;

}





3. Add element before the given one

void addBefore(element * f, int value) {
//1
element * t = new element;
//2
t->next = f->next;
//3
f->next = t;
//4
t->x = f->x;
f->x = value;

}





5. Remove element after given one

void deleteAfter(element * f) {
element * t = f->next;
f->next = f->next->next; //t->next
delete t;

}





O… ok, after 3 should be 4, maybe…



4. Delete the given element

?
А если так попробовать?







Algorithms & Programming
Programming Basics

С/С++/Kotlin programming

(p.8 – Dynamic Memory Management)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua


