
Algorithms & Programming
Programming Basics

С/С++/Kotlin programming

(p.6 – Files + Structures / Data Classes)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua



Text & Binary files

• Text files

– contain text representation of information

– for writing / reading you need to convert

– can be viewed / read in text editor

• Binary files

– contain data in the same format as in memory

– no conversion needed

– a program is needed to view / read



Writing structures to files

• To write structure to a file in C++, you can 
follow these steps:

1. Define the structure that you want to write to 
the file.

2. Open a file stream using the ofstream class.

3. Check if the file stream is open.

4. Write the structure to the file using the write 
function.

5. Close the file stream.

Let’s look on this steps deeper



Writing structure to file

1. Define the structure that you want to write 
to the file

struct Person {
char name[50];
int age;
double height;

};



Writing structure to file

2. Open a file stream using the ofstream class

ofstream outFile(“file.txt");

3. Check if the file stream is open

if (!outFile.is_open()) {
cerr << "Error: Cannot open file\n";
return 1;

}



Writing structure to file

4. Write the structure to the file using the write 
function

Person person = {"John", 30, 1.8};
outFile.write(reinterpret_cast<char*>(&person), 

sizeof(person));

Note that we use the reinterpret_cast operator to convert the pointer to the 
structure into a pointer to a char.

5. Close the file stream

outFile.close();



Writing structure to file

• Note that this method writes the entire 
structure to the file as a binary data. If you 
want to write the structure in a human-
readable format, you can use the << operator 
with the file stream object, like this:

outFile << "Name: " << person.name << "\n";
outFile << "Age: " << person.age << "\n";
outFile << "Height: " << person.height << "\n";



Demo



Reading structure from file

Reading a structure from a file in C++ involves 
the following steps:

1. Define the structure that you want to read from 
the file.

2. Open the file in read mode using the ifstream
class

3. Check if the file was opened successfully. If it was 
not, then you can't read from the file.

4. Read the data from the file and store it in a 
variable of the structure type.

5. Do something with the data that you just read

6. Close the file when you're done reading from it



Reading structure from file

1. Define the structure that you want to read 
from the file

struct Person {
char name[50];
int age;
double height;

};



Reading structure from file

2. Open the binary file in read mode using the 
ifstream class. For example, if the binary file is 
called "people.bin", you can open it as follows

ifstream inFile("people.bin", ios::binary);

Note the ios::binary flag, which specifies that we are reading a 
binary file



Reading structure from file

3. Check if the file was opened successfully. If it 
was not, then you can't read from the file.

if (!inFile.is_open()) {
cout << "Unable to open file" << endl;
return 1;

}

4. Read the data from the file and store it in a 
variable of the structure type
Person p;
inFile.read((reinterpret_cast<char*>)&p, sizeof(Person));



Reading structure from file

5. Do something with the data that you just read

…

6. Close the file when you're done reading from it

inFile.close();



Demo



Writing array of structures

// Open file
ofstream outFile("file.bin");

// Check if file opened
if (!outFile.is_open()) {

cerr << "Error: Cannot open file\n";
return 1;

}

// writing data to file
outFile.write(reinterpret_cast<char*>(people), 

sizeof(people));
// close file for clear buffer
outFile.close();



Reading array of structures

// Open file (also it can be at one line)
ifstream inFile;
inFile.open("file.bin", ios::binary);

// Check if file opened
if (!inFile.is_open()) {

cout << "Unable to open file" << endl;
return 1;

}

// Declare array
Person people [SIZE];
// Reading data from file
inFile.read(reinterpret_cast<char*>(people), 

sizeof(Person) * SIZE);

// Close file
inFile.close();



Kotlin: Data Classes & Files

• In Kotlin, the java.io.Serializable interface is 
used to mark a class as serializable, just like in 
Java

• To make a class serializable, you simply need 
to implement the java.io.Serializable interface:

data class Person(
var name: String, 
var age: Int, 
var height: Double

) : Serializable



Kotlin: Data Classes & Files

val person = Person("Alice", 19, 1.75)
val file = File("person.ser")

ObjectOutputStream(FileOutputStream(file)).use { out ->
out.writeObject(person)

}

ObjectInputStream(FileInputStream(file)).use { inp ->
val decodedPerson = inp.readObject() as Person
println(decodedPerson)

}



Kotlin: Data Classes & Files

val person = Person("Alice", 19, 1.75)
val file = File("person.ser")

ObjectOutputStream(FileOutputStream(file)).use { out ->
out.writeObject(person)

}

ObjectInputStream(FileInputStream(file)).use { inp ->
val decodedPerson = inp.readObject() as Person
println(decodedPerson)

}

But there is also a more modern approach…



Kotlin: Data Classes & Files

• To serialize data class objects to a file in Kotlin, 
you can use the built-in Kotlin serialization 
library, which allows you to serialize and 
deserialize Kotlin objects to and from various 
data formats, including JSON, CBOR, and 
ProtoBuf.

• Let’s look on example of how to serialize data 
class objects to a JSON file.



Serializing data class objects

• In Kotlin, you can serialize a data class using 
one of the serialization frameworks available, 
such as Kotlinx serialization or Jackson. 

– First, add the following dependencies to your 
build.gradle file:

plugins {
kotlin("jvm") version "1.9.23"
kotlin("plugin.serialization") version "1.9.23"

}

dependencies {
testImplementation(kotlin("test"))
implementation(

"org.jetbrains.kotlinx:kotlinx-serialization-json:1.6.0")
}



Serializing data class objects

1. Define a data class that you want to serialize
@Serializable
data class Person(

var name: String, 
var age: Int, 
var height: Double

)

Note about annotation your data class with @Serializable



Serializing data class objects

2. Use the Json.encodeToString function to serialize 
an instance(s) of your data class to JSON

val p1 = Person("John", 21, 1.8)
val p2 = Person("Piter", 20, 1.7)
val p3 = Person("Mary", 19, 1.65)

val a = arrayOf(p1, p2, p3)

val file = File("person.json")
val jsonString = Json.encodeToString(a)
file.printWriter().use { 

it.println(jsonString)
}



Deserializing data class objects

3. Use the Json.decodeFromString function to 
deserialize an instance(s) of your data class from 
JSON

val file = File("person.json")
val people = Json.decodeFromString<Array<Person>>(

file.readText()
)
people.forEach { println(it) }



Demo



Algorithms & Programming
Programming Basics

С/С++/Kotlin programming

(p.6 – Files + Structures / Data Classes)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua


	Slide 1: Algorithms & Programming Programming Basics
	Slide 2: Text & Binary files
	Slide 3: Writing structures to files
	Slide 4: Writing structure to file
	Slide 5: Writing structure to file
	Slide 6: Writing structure to file
	Slide 7: Writing structure to file
	Slide 8
	Slide 9: Reading structure from file
	Slide 10: Reading structure from file
	Slide 11: Reading structure from file
	Slide 12: Reading structure from file
	Slide 13: Reading structure from file
	Slide 14
	Slide 15: Writing array of structures
	Slide 16: Reading array of structures
	Slide 17: Kotlin: Data Classes & Files
	Slide 18: Kotlin: Data Classes & Files
	Slide 19: Kotlin: Data Classes & Files
	Slide 20: Kotlin: Data Classes & Files
	Slide 21: Serializing data class objects
	Slide 22: Serializing data class objects
	Slide 23: Serializing data class objects
	Slide 24: Deserializing data class objects
	Slide 25
	Slide 26: Algorithms & Programming Programming Basics

