
Algorithms & Programming
Programming Basics
С/С++/Kotlin programming

(p.5 – Structures / Data Classes)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua

Structures in C/C++

• In C/C++, a structure is a user-defined data
type that groups together variables of
different data types under a single name.

• A structure is a way to organize data that is
related to each other, and it provides a
convenient way to access and manipulate
multiple variables at once.

Structures in C/C++

• A C/C++ structure is defined using the "struct"
keyword, followed by the name of the
structure and a set of braces that enclose the
member variables of the structure.

• For example:

struct Person {
char name[50];
int age;
double height;

};

Structures in C/C++

struct Person {
char name[50];
int age;
double height;

};

In this example, we define a structure called
"Person" that contains three member variables:
a character array called "name" to store the
name of the person, an integer variable called
"age" to store their age, and a floating-point
variable called "height" to store their height.

Structures in C/C++

• Once a structure is defined, we can create
variables of that structure type and access the
member variables using the dot operator.

• For example:

Person john;
strcpy(john.name, "John Smith");
john.age = 25;
john.height = 1.7;

Note: in this example “strcpy” – string function that copies
value of string literal into character array

Declaring / Initialization

• In C++, structures can be declared and
initialized in several ways.

• Here is an example of a structure declaration:

struct Person {
string name;
int age;
double height;

};

This declares a structure named "Person" with three
member variables: a string called "name", an integer
called "age", and a floating-point number called
"height".

Declaring / Initialization

• To initialize a structure variable, we can use
either the C-style syntax or the C++11 uniform
initialization syntax.

• Here's an example of initializing a structure
using the C-style syntax:

Person johnSmith;
john.name = "John Smith";
john.age = 25;
john.height = 1.7;

In this example, we create a variable called "john" of type
"Person" and assign values to its member variables using the dot
operator.

Declaring / Initialization

• We can also initialize a structure using the
C++11 uniform initialization syntax:

Person jane{"Jane Doe", 30, 1.6};

Person jane = {"Jane Doe", 30, 1.6};

or

In this example, we create a variable called
"jane" of type "Person" and initialize its member
variables using curly braces.

Pointer to structure

• In C++, a pointer to a structure can be used to
access and manipulate the members of a
structure.

• A pointer is a variable that stores the memory
address of another variable, and it can be
used to indirectly access the value stored in
that variable.

Pointer to structure

• To declare a pointer to a structure in C++, we
can use the same syntax as declaring a pointer
to any other data type, with the addition of
the structure name:

struct Person {
char name[50];
int age;
double height;

};

Person *ptrPerson;
// declare a pointer to a Person structure

Pointer to structure

• In this example, we declare a pointer to a
structure called "Person" using the "*"
symbol. The pointer variable is named
"ptrPerson".

struct Person {
char name[50];
int age;
double height;

};

Person *ptrPerson;
// declare a pointer to a Person structure

Pointer to structure

• To initialize the pointer to point to a specific
instance of the structure, we can use the
"address-of" operator "&" with the variable
name:

Person johnSmith = {"John Smith", 25, 1.7};

// set the pointer to point to the "johnSmith" variable
ptrPerson = &johnSmith;

Pointer to structure

Person johnSmith = {"John Smith", 25, 1.7};

// set the pointer to point to the "johnSmith" variable
ptrPerson = &johnSmith;

• In this example, we create an instance of the
"Person" structure called "johnSmith" and
initialize its member variables.

• We then set the pointer "ptrPerson" to point
to the address of the "johnSmith" variable
using the "&" operator.

Pointer to structure

• Once the pointer is initialized, we can access
and manipulate the members of the structure
using the "->" operator:

cout << "Name: " << ptrPerson-> name << endl;
cout << "Age: " << ptrPerson-> age << endl;

• In this example, we use the "->" operator to
access the member variables of the structure
through the pointer.

• The "->" operator is used to dereference the
pointer and access the members of the structure.

Declaring / Initialization

• We can also use the "new" operator to
dynamically allocate memory for a structure:

Person *ptrPerson2 = new Person{"Mike Smith", 35, 1.65};

• In this example, we create a pointer to a
"Person" structure called "ptrPerson2" and
dynamically allocate memory for a new
"Person" structure.

• We initialize the member variables using curly
braces.

Finalization

• When we're done using the dynamically
allocated structure, we should free the
memory using the "delete" operator:

• This frees the memory that was allocated for
the structure.

delete ptrPerson2;

Demo

Arrays of structures

• This creates an array of Person structures with
a size of 10.

• You can access the elements of the array using
the index notation, just like with any other
array.

const int ARRAY_SIZE = 10;
Person people[ARRAY_SIZE];

Arrays of structures

• To initialize the elements of the array, you can
use a loop like this:

for (int i = 0; i < ARRAY_SIZE; i++) {
cout << "Enter name for person #" << i+1 << ": ";
getline(cin, people[i].name);
cout << "Enter age for person #" << i+1 << ": ";
cin >> people[i].age;
cout << "Enter height for person #" << i+1 << ": ";
cin >> people[i].height;
cin.ignore(); // to consume the newline

// character left in the input stream
}

Arrays of structures

• You can then access the data in the array using
the same index notation:

cout << "Name of person #3 is: "
<< people[2].name << endl;

cout << "Age of person #5 is: "
<< people[4].age << endl;

cout << "Height of person #9 is: "
<< people[8].height << endl;

Demo

Kotlin: Data Class

• In Kotlin, a data class is a special type of class
that is primarily used to hold data.

• It is often used to create objects that
represent entities in an application such as a
user, a product, or a message.

data class User(
val name: String,
val age: Int,
val email: String

)

Kotlin: Data Class

data class User(
val name: String,
val age: Int,
val email: String

)

• In this example, the User class has three
properties: name, age, and email.

• The data keyword before the class name tells
the compiler to generate some common
methods such as toString(), equals(),
hashCode(), and copy() for this class.

Kotlin: Data Class

• You can create an instance of this class by
using the constructor:

val user = User("John Doe", 25, "john.doe@example.com")

The toString() method is automatically
generated for the data class, so you can print
the object like this:

println(user)
// prints
//"User(name=John Doe, age=25, email=john.doe@example.com)"

Kotlin: Data Class

• The equals() and hashCode() methods are also
generated, so you can compare two User objects
like this:

val user2 = User("John Doe", 25, "john.doe@example.com")
val user3 = User("Jane Doe", 30, "jane.doe@example.com")

println(user == user2) // prints true
println(user == user3) // prints false

The copy() method is also generated, which allows
you to create a new object with some properties
copied from the original:
val updatedUser = user.copy(name = "John Smith")
println(updatedUser) // prints "User(name=John Smith,
age=25, email=john.doe@example.com)"

Demo

Algorithms & Programming
Programming Basics
С/С++/Kotlin programming

(p.4 – Structures / Data Classes)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua

