
Algorithms & Programming
Programming Basics

С/С++/Kotlin programming

(p.4 – Files)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua

Files

• In computing, a file is a unit of data that is stored
on a computer or other electronic device.

• A file can be thought of as a collection of
information, which can be text, images, music,
programs, or any other type of data.

• Files are often organized into directories or folders
to help users manage and find them more easily.

• The file name typically provides a brief description
of the file's contents, while the file extension
indicates the type of file and its format.

Files

• Files can be opened and edited by various
software applications, and they can be shared,
copied, moved, and deleted.

• Files can be stored on a variety of storage
devices, such as hard drives, flash drives,
optical discs, or cloud storage services.

Files

• Files with the same name cannot be in the
same directory.

• A file name is not only as its name, but also
as an extension, for example: file.txt and
file.dat are different files, although they have
the same names.

• There is such a thing as the full name of the
files - this is the full path to the file directory
with the file name, for example:
D:\docs\file.txt.

Files

• For working with files, you need to include
a header file <fstream>.

• The header file <fstream> defines several
classes and includes header files:
• <ifstream> - file input and
• <ofstream> - file output.

Files

• File I/O is similar to standard I/O, the only
difference is that I/O is not done to the
screen, but to a file.

• If input/output to standard devices is
performed using the cin and cout objects,
then to organize file I/O, it is enough to create
your own objects that can be used in the
same way as cin and cout.

Files

• For example, if we need to create text file and write
string ”Working with files in С++” in it.

• Then we should do next steps:

1. Create object of ofstream class;
2. Associate this object with file for writing;
3. Write string to file;
4. Close file.

Files

// create an object to write to a file

ofstream /*name of object*/; // object of ofstream class

Let’s name will be – fout:

ofstream fout;

What is the object for?
• The object is required to be able to write to the file.
• The object has already been created, but is not associated

with the file to which the string needs to be written.

fout.open("example.txt");

// Associate object with file

Files

ofstream fout;

fout.open("example.txt");

• With the dot operation, we get access to the open() class
method, in parentheses of which we specify the file name.

• The specified file will be created in the current directory
with the program.

• If a file with the same name exists, then the existing file will
be replaced by the new one.

fout << "Working with files in С++

// write string to the file

Files

ofstream fout;

fout.open("example.txt");

fout << "Working with files in С++";

fout.close(); // closing file

Outcome - a file with a string is created

Since it is no longer necessary to change the contents of the
file, it must be closed, that is, the object should be separated
from the file.

Steps 1 and 2 can be combined, that is, in one line, create an
object and associate it with a file:

ofstream fout("example.txt");

Files

#include <fstream>

using namespace std;

int main()

{

ofstream fout("example.txt");

fout << "Working with files in С++";

fout.close();

return 0;

}

As result we get a such program:

It remains to check if program ran correctly, and for this we
open the file example.txt:

Working with files in С++

Demo

In order to read the file, you will need to follow the
same steps as when writing to a file with minor
changes:

• Create an object of the ifstream class and associate
it with the file to be written to;

• Read file;

• Close the file.

Files

Files
#include <fstream>

#include <iostream>

using namespace std;

int main()

{

char buff[50];

ifstream fin("example.txt");

fin >> buff;

cout << buff << endl;

fin.getline(buff, 50);

fin.close();

cout << buff << endl;

return 0;

}

Demo

Files

• The program worked correctly, but this is not always the
case, even if everything is in order with the code.

• For example, the name of a non-existent file was passed to
the program, or an error was made in the name.

• In this case, nothing will happen at all.
• The file will not be found, which means that it is not

possible to read it.
• Therefore, the compiler will ignore the lines where the file

is being manipulated.
• As a result, the program will exit correctly, but nothing will

be shown on the screen.

Files

• A simple user will not understand what is the matter and
why the line from the file did not appear on the screen.

• To respond to this situation, C++ provides a special
function - is_open(), which returns integer values:
• 1 - if the file was successfully opened,
• 0 - if the file has not been opened.

• Let’s improve the program with the opening of the file, in
such a way that if the file is not opened, a corresponding
message is displayed.

Files
#include <fstream>

#include <iostream>

using namespace std;

int main()

{

char buff[50];

ifstream fin("example.txt");

if (!fin.is_open()) // if file is not opened

cout << "File can’t be opened!\n";

else {

fin >> buff;

cout << buff << endl;

fin.getline(buff, 50);

fin.close();

cout << buff << endl;

}

return 0;

}

Demo

Modes (flags) for files

Const Description

ios_base::in Open file for read

ios_base::out Open file fo write

ios_base::ate move pointer to end of file when opening

ios_base::app open file for writing to end of file

ios_base::trunc remove the contents of the file if it exists

ios_base::binary open a file in a binary mode

Modes (flags) for files

File opening modes can be set when creating an object or when
you call a function open()

// open file to add information

// at the end of file

ofstream fout("example.txt", ios_base::app);

fout.open("example.txt", ios_base::app);

File opening modes can be combined using the bitwise logical
operation "or“ - |, for example: ios_base::out |

ios_base::trunc – open file for writing, and clear it
before this.

Default modes

• Objects of the ofstream class, when associated with
files, by default contain file opening modes
ios_base::out | ios_base::trunc.

• That is, the file will be created if it does not exist.
• If the file exists, then its contents will be deleted,

and the file itself will be ready for recording.

• Objects of the ifstream class, when associated with
a file, have by default the file open mode
ios_base::in - the file is opened for reading only.

• The file open mode is also called “flag”.

Files in Kotlin

There are several ways to write text files in
Kotlin:

• Direct writing:

–writeText

–writeBytes

• Write, using Writers objects:

–printWriter

–bufferedWriter

writeText

Maybe the simplest extension method of class
File: writeText takes the content as a String
argument and writes it directly to the specified
file.

This content is text encoded in UTF-8 (default)
or any other specified

File(fileName).writeText(fileContent)

writeBytes

• Similarly, we can use bytes as input.

• The writeBytes method takes a ByteArray as
an argument and directly writes it to the
specified file.

• This is useful when we have byte array content
rather than plain text.

File(fileName).writeBytes(fileContentAsArray)

printWriter

• If we want to use Java PrintWriter , Kotlin provides a
method printWriter for this purpose.

• With it, we can print formatted representations of
objects to the output stream:

File(fileName).printWriter()

This method returns a new instance of PrintWriter .
Then we can use it’s method use , for write data

File(fileName).printWriter().use {
out -> out.println(fileContent)

}

The resource will be closed regardless of whether the function
succeeded or not

https://docs.oracle.com/javase/8/docs/api/java/io/PrintWriter.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/java.io.-file/print-writer.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/use.html

bufferedWriter

• Similarly, Kotlin also provides a function named
bufferedWriter , from Java

• With this writer we can more effectively write text to
output stream

File(fileName).bufferedWriter()

As a PrintWriter , this function returns a new instance of
BufferedWriter , that we can use for write a content of file

File(fileName).bufferedWriter().use {
out -> out.write(fileContent)

}

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/java.io.-file/buffered-writer.html

Reading text files in Kotlin

There are several ways to read and process text
files в Kotlin:

• forEachLine

• useLines

• bufferedReader

• readLines

• inputStream

• readText

forEachLine

• Reads file line by line, using specified
charset (UTF-8 by default) and calls action for
each line:

fun readFileLineByLineUsingForEachLine(fileName: String)
= File(fileName).forEachLine { println(it) }

https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html

useLines

• Calls the block callback giving it a sequence of
all the lines in this file and closes the reader
once the processing is complete

fun readFileAsLinesUsingUseLines(fileName: String): List<String>
= File(fileName).useLines { it.toList() }

bufferedReader

• Returns a new BufferedReader for reading the
content of this file.

• When we have a BufferedReader, we can read
all lines in it:

fun readFileAsLinesUsingBufferedReader(fileName: String): List<String>
= File(fileName).bufferedReader().readLines()

readLines

• Reads the file content as a list of lines.

fun readFileAsLinesUsingReadLines(fileName: String): List<String>
= File(fileName).readLines()

Do not use this function for huge files.

inputStream

• Constructs a new FileInputStream of this file
and returns it as a result.

• When we receive the input stream, we can
convert it to bytes and then to a full String

fun readFileAsTextUsingInputStream(fileName: String) =
File(fileName)

.inputStream()

.readBytes()

.toString(Charsets.UTF_8)

readText

• Gets the entire content of this file as a String
using UTF-8 or specified charset.

fun readFileDirectlyAsText(fileName: String): String
= File(fileName).readText(Charsets.UTF_8)

This method is not recommended on huge files. It has an internal limitation of 2
GB file size.

Demo

Algorithms & Programming
Programming Basics

С/С++/Kotlin programming

(p.4 – Files)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua

