Algorithms \& Programming Programming Basics
 C/C++/Kotlin programming (p. 3 - Functions - Recursion)

Yevhen Berkunskyi, NUoS eugeny.berkunsky@gmail.com http://www.berkut.mk.ua

Recursion

What is recursion?

Let's use Google?..

Recursion

Recursion is a ...?

About 165,000,000 results (0.45 seconds)

Did you mean: recursion

https://en.wikipedia.org , wiki , Recursion !
Recursion - Wikipedia
Recursion (adjective: recursive) occurs when a thing is defined in terms of itself or of its type.
Recursion is used in a variety of disciplines ranging ..
Recursion (computer science) • Recursion (disambiguation) • Category:Recursion

People also ask :
What is recursion with example?
What do u mean by recursion?
What is recursion in $\mathrm{C}++$?

Recursion in C

Recursion
What is recursive thinking?
Computer science

Recursion

Recursion is the definition of a part of a function through itself, that is, it is a function that calls itself, directly (in its body) or indirectly (through another function).

Recursion

Typical recursive tasks are tasks:

- Caclulating n !
- Finding Fibonacci numbers.

Such tasks have already been solved by us, but only using cycles, that is, iteratively.

Generally speaking, everything that is solved iteratively can be solved recursively, that is, using a recursive function.

Recursion

Calculating factorial:

$$
n!=1 \cdot 2 \cdot 3 \cdot \cdots \cdot n
$$

Iterative (looping) process:

int $\mathrm{f}=1$;
for (int $i=1 ; i<=n ; i++)$ \{

$$
\text { f } *=i ;
$$

\}

Recursion

Calculation of factorial

$$
n!=\left\{\begin{array}{l}
1, \quad \text { if } n=0 \text { or } n=1 \\
(n-1)!* n, \quad \text { if } n>1
\end{array}\right.
$$

Recursive process:
int $f($ int $n) ~\{$
if ($\mathrm{n}=0$ || $\mathrm{n}==1$) return 1;
else return n * $f(n-1)$;
\}

Calculation of factorial

Tail Recursion

Tail recursion is defined as a recursive function in which the recursive call is the last statement that is executed by the function. So basically nothing is left to execute after the recursion call.

$$
f(n, a)= \begin{cases}a, & n=0 \\ f(n-1, n * a), & n>0\end{cases}
$$

int Factorial(int $n, ~ i n t ~ a ~=~ 1) ~\{~$

$$
\begin{aligned}
& \text { // return condition } \\
& \text { if (n=0) } \\
& \text { return a; } \\
& \text { // tail recursive call } \\
& \text { return Factorial (} n-1, n \text { * a); }
\end{aligned}
$$

Recursion

Fibonacci numbers:

$$
f_{i}=\left\{\begin{array}{lr}
1, & \text { if } i=0 \text { or } i=1 \\
f_{i-1}+f_{i-2}, & \text { if } i>1
\end{array}\right.
$$

Fibonacci numbers

Simple recursion:

int fib(int i) \{
if (i == 0 || $i==1$) return 1; else return fib(i - 1) + fib(i - 2); \}

And what is wrong with it?

Demo

Recursion

Recursion

Recursion

We have a problem. How can we solve it?

Recursion

Tail recursion

int Fib(int n , int $\mathrm{a}=0$, int $\mathrm{b}=1$) \{
// return condition
if ($\mathrm{n}==1$) return b;
else
// tail recursive call return Fib(n-1, b, a+b);
\}

Recursion

And one more difficult problem.
And more interesting ©
«Tower of Hanoi».
The objective of the puzzle is to move the entire stack to the last rod, obeying the following rules:

- Only one disk may be moved at a time.
- Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack or on an empty rod.
- No disk may be placed on top of a disk that is smaller than it.

Recursion

«Tower of Hanoi»

```
#include <iostream>
using namespace std;
void p(int n, int a, int b, int c) {
    if (n == 1) {
            cout << a << "->" << b << "\n";
    } else {
        p(n-1, a, c, b);
        p(1, a, b, c);
        p(n-1, c, b, a);
    }
}
int main() {
    int n;
    cin >> n;
    p(n, 1, 2, 3);
    return 0;
```


Recursion

Optimistic final ()

Algorithms \& Programming Programming Basics
 C/C++/Kotlin programming (p. 3 - Functions - Recursion)

Yevhen Berkunskyi, NUoS eugeny.berkunsky@gmail.com http://www.berkut.mk.ua

