
Algorithms & Programming
Programming Basics

С/С++ programming

(p.2 – Functions & Arrays)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua

C++ Arrays

• Arrays are used to store multiple values in a
single variable, instead of declaring separate
variables for each value.

• To declare an array, define the variable type,
specify the name of the array followed by
square brackets and specify the number of
elements it should store:

string cars[4];

C++ Arrays

• We have now declared a variable that holds an array
of four strings. To insert values to it, we can use an
array literal - place the values in a comma-separated
list, inside curly braces:

string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};

• To create an array of three integers, you could write:

int myNum[3] = {10, 20, 30};

Get the Size of an Array

• To get the size of an array, you can use the
sizeof() operator:

int arr[] = {5, 2, 3, 7, 8};
int size = sizeof(arr);
cout << "size = " << size;

Result is:

size = 20

It is because the sizeof() operator returns the size of a type in bytes.

int type is usually 4 bytes, so from the example above,
4 x 5 (4 bytes x 5 elements) = 20 bytes.

Get the Size of an Array

• To get the size of an array, you can use the
sizeof() operator:

Result is:

int arr[] = {5,2,3,7,8};
int getArrayLength = sizeof(arr) / sizeof(int);
cout << "length = " << getArrayLength;

length = 5

Let’s code!

C++ Functions

• A function is a block of code which only runs
when it is called.

• You can pass data, known as parameters, into
a function.

• Functions are used to perform certain actions,
and they are important for reusing code:
Define the code once, and use it many times.

Create a Function

• C++ provides some pre-defined functions, such as main(),
which is used to execute code. But you can also create your
own functions to perform certain actions.

• To create (often referred to as declare) a function, specify the
name of the function, followed by parentheses ():

• myFunction() is the name of the function
• void means that the function does not have a return value.
• inside the function (the body), add code that defines what the function should do

void myFunction() {
// code to be executed

}

Call a Function

• Declared functions are not executed immediately. They are
"saved for later use", and will be executed later, when they
are called.

• To call a function, write the function's name followed by two
parentheses () and a semicolon ;

• In the following example, myFunction() is used to print a
text (the action), when it is called.

Call a Function

• In the following example, myFunction() is used to print a
text (the action), when it is called:

#include <iostream>

using namespace std;

void myFunction() {
cout << “I just got executed\n";

}

int main()
{

myFunction();
return 0;

}

// ------ result -----
I just got executed

Call a Function

• A function can be called multiple times:
#include <iostream>

using namespace std;

void myFunction() {
cout << “I just got executed\n";

}

int main()
{

myFunction();
myFunction();
myFunction();
return 0;

}

// ------ result -----
I just got executed
I just got executed
I just got executed

Function Declaration and
Definition

A C++ function consist of two parts:

• Declaration: the function's name, return type,
and parameters (if any)

• Definition: the body of the function (code to
be executed)

Note: If a user-defined function, such as myFunction() is declared after the main()
function, an error will occur

void myFunction() { // declaration
// the body of the function

}

Function Declaration and
Definition

• However, it is possible to separate the declaration and the
definition of the function - for code optimization.

• You will often see C++ programs that have function
declaration above main(), and function definition below
main(). This will make the code better organized and easier to
read:

void myFunction(); // declaration

int main()
{

myFunction(); // call the function
return 0;

}

void myFunction() { // function definition
cout << "I just got executed";

}

C++ Function Parameters

Parameters and Arguments
• Information can be passed to functions as a parameter.

Parameters act as variables inside the function.

• Parameters are specified after the function name, inside the
parentheses. You can add as many parameters as you want,
just separate them with a comma:

void functionName(parameter1, parameter2, parameter3) {
// code to be executed

}

Example

When a parameter is passed to the function, it is called an argument.
So, from the example above: name is a parameter, while John, Liam and Jane are arguments.

#include <iostream>

using namespace std;

void myFunction(string name) {
cout << name << " Dow\n";

}

int main()
{

myFunction("John");
myFunction("Liam");
myFunction("Jane");
return 0;

}

Parameters

In C++, parameters are passed to a function in
one of the following ways:

• By value

• By reference

• By pointer

By value

#include <iostream>

using namespace std;

void swapNums(int x, int y) {
int t = x; x = y; y = t;

}

int main() {
int firstNum = 5;
int secondNum = 7;
cout << "Before swap: \n";
cout << firstNum << " " << secondNum << "\n";
swapNums(firstNum,secondNum);
cout << "After swap: \n";
cout << firstNum << " " << secondNum << "\n";
return 0;

}

Let’s see

#include <iostream>

using namespace std;

void swapNums(int &x, int &y) {
int t = x; x = y; y = t;

}

int main() {
int firstNum = 5;
int secondNum = 7;
cout << "Before swap: \n";
cout << firstNum << " " << secondNum << "\n";
swapNums(firstNum,secondNum);
cout << "After swap: \n";
cout << firstNum << " " << secondNum << "\n";
return 0;

}

By reference

Let’s code!

By pointer

#include <iostream>

using namespace std;

void swapNums(int *x, int *y) {
int t = *x; *x = *y; *y = t;

}

int main() {
int firstNum = 5;
int secondNum = 7;
cout << "Before swap: \n";
cout << firstNum << " " << secondNum << "\n";
swapNums(&firstNum,&secondNum);
cout << "After swap: \n";
cout << firstNum << " " << secondNum << "\n";
return 0;

}

Let’s see

C++ Function Overloading

• In C++, two or more functions can have the same
name if the number and/or type of arguments
passed is different.

• These functions having the same name but
different arguments are known as overloaded
functions. For example:

int test() { return 0; }

int test(int a) { return a; }

double test(double a) { return a; }

int test(int a, int b) { return a + b; }

C++ Function Overloading

• Overloaded functions may or may not have
different return types but they must have
different arguments. For example

Here, both functions have the same name, the same type, and the same
number of arguments. Hence, the compiler will throw an error.

// error!!!

int test(int a) { return a; }

double test(int b) { return 1.0*b; }

C++ Recursion

• A function that calls itself is known as a
recursive function.

• And, this technique is known as recursion.

void recurse() {
...
recurse();
...

}

int main() {
...
recurse();
...
return 0;

}

recursive
call

function
call

C++ Recursion

• The recursion continues until some condition
is met.

• To prevent infinite recursion, if...else
statement (or similar approach) can be used
where one branch makes the recursive call
and the other doesn't.

Example: Factorial

#include <iostream>

using namespace std;

long long factorial(int);

int main() {
int n;

cout << "Enter a non-negative number: ";
cin >> n;
long long result = factorial(n);
cout << "Factorial of " << n << " = " << result;

return 0;
}

long long factorial(int n) {
if (n > 1) return n * factorial(n-1);
else return 1L;

}

Algorithms & Programming
Programming Basics

С/С++ programming

(p.2 – Functions & Arrays)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua

