
Algorithms & Programming
Programming Basics

С/С++ programming
(p.1 – language concepts & flow control)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua

• C++ is a multipurpose programming language

• It can be used for writing every type of
software that the programmer wants.

• It can be from a simple program like
computing the sum of two numbers up to a
full operating system (for example, Windows)
and videogames (PS3, PS4, PS5, XBOX).

C/C++

• Through the course we will be using the GNU
C++ compiler, G++, along with the IDE CLion.

• All of the code will be written in standard C++.

• CLion can be downloaded from
https://www.jetbrains.com/clion/

• Compilers can be downloaded from

– https://cygwin.com/install.html

– https://sourceforge.net/projects/mingw-w64/

IDE & Compilers

Libraries

• The full extension of C++ has libraries for many
purposes: input and output, math, memory
management, time, file processing, string processing
and many more features.

• However, when we start to code, we must define which
of these libraries we want to use in our program.

• Since 2003, C++ also implemented a feature named
namespaces, which are another way to organize all of
the stuff inside the language.

The main function

• In C++, all programs must contain a function
(or a piece of code) named main.

• The purpose of this function is to indicate the
compiler where will the program start its
execution.

#include <iostream>

int main() {
std::cout << "Hello, World!" << std::endl;
return 0;

}

Input and Output (I/O)

• Almost every program in C++ needs an input
and an output. There are some exceptions to
the rule, but normally, there is always I/O.

• The input is all the data that enters the
computer, like numbers, words.

• The output are the data that is showed to the
screen (also named console).

• The library used in C++ for this operations is
named iostream.

Data Types and variables

• When we work with a program, there are many
types of data we can use.

• For example: numbers, text, and some special
types of data. All of these are called Data Types.

• In C++ we have 3 categories: numeric, alphabetic
and binary.

Data Types and variables

• In the numeric category we have 3 types of
data:

– int – Represent integer numbers

– float – Represents numbers with 7 decimal
positions after the point

– double – Represents numbers with 15/16
decimal positions after the point

• There are more specific numeric data types
but for the purposes of this course, these
three are enough.

Data Types and variables

• For the alphabetic category we have two types
of data:

– char – Store one alphanumeric digit

– string – Store a sequence of alphanumeric
digits

Data Types and variables

• And in the binary category, there is only one
data type:

– bool – Store a true or false. Zero or One.

• The bool data type may sound very useless at
first but it has its handy applications when
programming some specific routines.

Data Types and variables

• In C++ there is a concept named variable.

• A variable can store information of any of these
mentioned types. Imagine a variable like a box
that can hold some value for a certain time and
you can do any operation with that value.

• In C++, before using variables, we must declare
them. How? Like this:

<datatype> <nameOfVariable>

Data Types and variables

• You can name the variables in the way that
you want, but it is recommendable to give
them a name similar to the use it will have.

• How can we assign a value?

• We use the = operator:

int numberA;
int numberB;
int result;

numberA = 10;
numberB = 5;
result = numberA + numberB;

Data Types and variables

• The complete program would look like this:

#include <iostream>
using namespace std;

int main() {
int numberA;
int numberB;
int result;

numberA = 10;
numberB = 5;
result = numberA + numberB;

cout << result;
return 0;

}

Data Types and variables

#include <iostream>
using namespace std;

int main() {
int numberA;
int numberB;
int result;
cout << "Input first value: ";
cin >> numberA;
cout << "Input second value: ";
cin >> numberB;
result = numberA + numberB;
cout << "The sum is: " << result;
return 0;

}

String I/O

#include <iostream>
#include <string>
using namespace std;
int main()
{

string name;
cout << "What's your name? ";
cin >> name;
cout << "Goodbye " << name;
return 0;

}

Escape Sequences

\n – End of line
\t – Insertion of tabular space

In C++, there are special sequences that allow the
programmer a better distribution of the information
that is displayed.
The sequences are:

With these two sequences, you can design a well
distributed interface.

cout << "Here is a line\n" << "Here is another line\t"
<< "I am after a tab space";

Program Flow

if… if…else…

if statement

if (condition) {
// statements for execute when condition is true

}

if (7 > 6) {
cout << ”seven is more than six”;

}

Example

Structure of if with curly braces:

• Without curly braces, there is one statement in body, only first
statement.

• If you need many statements in the body of if statement, you
should use curly braces.

if statement

Sometimes, when condition is false, it will be
convenient to execute some code, different to code
when condition is true

if (condition) {
/* execute this code, if condition is true */

}
else {

/* execute this code, if condition is false */
}

Nested if statements

int age;
cout << "How old are you ? ";
cin >> age;
if (age < 100) {

cout << "You are so young!\n";
} else if (age == 100) {

cout << "Youth is over\n";
} else {

cout << "Don't live so many years\n";
}

switch - case

switch - case

switch(expression) {
case x:
// code block
break;

case y:
// code block
break;

default:
// code block

}

switch – case example

int day = 4;
switch (day) {

case 1: cout << "Monday";
break;

case 2: cout << "Tuesday";
break;

case 3: cout << "Wednesday";
break;

case 4: cout << "Thursday";
break;

case 5: cout << "Friday";
break;

case 6: cout << "Saturday";
break;

case 7: cout << "Sunday";
break;

}

C++ While Loop

• The while loop loops through a block of code
as long as a specified condition is true:

while (condition) {
// code block to be executed

}

C++ While Loop example

• In the example below, the code in the loop will run, over
and over again, as long as a variable (i) is less than 5:

int i = 0;
while (i < 5) {
cout << i << "\n";
i++;

}

C++ Do/While Loop

• The do/while loop is a variant of the while
loop. This loop will execute the code block
once, before checking if the condition is true,
then it will repeat the loop as long as the
condition is true.

do {
// code block to be executed

} while (condition);

C++ Do/While Loop

• The example below uses a do/while loop. The
loop will always be executed at least once,
even if the condition is false, because the code
block is executed before the condition is
tested:

int i = 0;
do {

cout << i << "\n";
i++;

} while (i < 5);

C++ For Loop

• When you know exactly how many times you
want to loop through a block of code, use the
for loop instead of a while loop:

for (statement 1; statement 2; statement 3) {
// code block to be executed

}

C++ For Loop

• When you know exactly how many times you
want to loop through a block of code, use the
for loop instead of a while loop:

for (statement 1; statement 2; statement 3) {
// code block to be executed

}

Statement 1 is executed (one time) before the execution of the
code block.

Statement 2 defines the condition for executing the code block.

Statement 3 is executed (every time) after the code block has been
executed.

C++ For Loop

• The example below will print the
numbers 0 to 4:

for (int i = 0; i < 5; i++) {
cout << i << "\n";

}

This example will only print even values
between 0 and 10:
for (int i = 0; i <= 10; i = i + 2) {

cout << i << "\n";
}

The foreach Loop

• There is also a "for-each loop" (introduced in C++
version 11 (2011), which is used exclusively to loop
through elements in an array (or other data sets):

for (type variableName : arrayName) {
// code block to be executed

}

int myNumbers[] = {10, 20, 30, 40, 50};
for (int i : myNumbers) {

cout << i << "\n";
}

• Example

C++ Arrays

• Arrays are used to store multiple values in a
single variable, instead of declaring separate
variables for each value.

• To declare an array, define the variable type,
specify the name of the array followed by
square brackets and specify the number of
elements it should store:

string cars[4];

C++ Arrays

• We have now declared a variable that holds an array
of four strings. To insert values to it, we can use an
array literal - place the values in a comma-separated
list, inside curly braces:

string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};

• To create an array of three integers, you could write:

int myNum[3] = {10, 20, 30};

Let’s code!

Questions?

Algorithms & Programming
Programming Basics

С/С++ programming
(p.1 – language concepts & flow control)

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua

