
Operators and Expressions

Conversions.
Widening and Narrowing Primitive Conversions

Widening and Narrowing Reference
Conversions

Conversions up the type hierarchy are called widening reference
conversions (also called upcasting), i.e., such a conversion converts
from a subtype to a supertype.
Object obj = "upcast me"; // Widening: Object <--- String

Conversions down the type hierarchy represent narrowing reference
conversions (also called downcasting).
String str = (String) obj;

// Narrowing requires cast: String <--- Object

Conversions

 Widening reference conversions are usually
done implicitly, whereas narrowing reference
conversions usually require a cast.

 The compiler will reject casts that are not
legal or issue an unchecked warning under certain
circumstances if type safety cannot be guaranteed.

Conversions

 Widening reference conversions do not
require any runtime checks and never result in an
exception during execution.

 Narrowing reference conversions require a
runtime check and can throw a ClassCastException
if the conversion is not legal.

Boxing and Unboxing Conversions

A boxing conversion converts the value of a
primitive type to a corresponding value of its
wrapper type. If p is a value of a primitiveType,
boxing conversion converts p into a reference r
of corresponding WrapperType, such that
r.primitiveTypeValue() == p.

Integer iRef = 10; // Boxing: Integer <----- int

System.out.println(iRef.intValue() == 10); // true

Boxing and Unboxing Conversions

An unboxing conversion converts the value of a
wrapper type to a value of its corresponding
primitive type. If r is a reference of a WrapperType,
unboxing conversion converts the reference r into
r.primitiveTypeValue(), where primitiveType is the
primitive type corresponding to the WrapperType.

int i = iRef; // Unboxing: int <----- Integer

System.out.println(iRef.intValue() == i); // true

Other Conversions

• Identity conversions are always permitted, as they allow
conversions from a type to that same type. An identity
conversion is always permitted.

int i = (int) 10; // int <---- int

String str = (String) "Hi"; // String <---- String

• String conversions allow a value of any other type to be
converted to a String type in the context of the string
concatenation operator +

• Unchecked conversions are permitted to facilitate operability
between legacy and generic code

• Capture conversions aid in increasing the usefulness of
wildcards in generic code

Type Conversion Contexts

Type Conversion Contexts

Assignment Context
 An assignment conversion converts the type of an
expression to the type of a target variable. An expression
(or its value) is assignable to the target variable, if the type
of the expression can be converted to the type of the
target variable by an assignment conversion.

Note
Special case where a narrowing conversion occurs when
assigning a non-long integer constant expression:

byte b = 10; // Narrowing conversion: byte <--- int

Type Conversion Contexts

Method Invocation Context

method invocation and assignment conversions
differ in one respect: method invocation
conversions do not include the implicit narrowing
conversion performed for integer constant
expressions.

Type Conversion Contexts

Casting Context of the Unary Type Cast Operator: (type)

The type cast construct has the following syntax:
(<type>) <expression>

The cast operator (<type>) is applied to the value of the <expression>.

long l = (long) 10; // Widening primitive conversion: long <--- int

int i = (int) l; // Narrowing primitive conversion: int <--- long

Object obj = (Object) "Upcast me"; // Widening ref conversion:

 //Object <--- String

String str = (String) obj; // Narrowing ref conversion:

 //String <--- Object

Integer iRef = (Integer) i; // Boxing: Integer <--- int

i = (int) iRef; // Unboxing: int <--- Integer

Numeric Promotion Context

Unary Numeric Promotion
• If the single operand is of type Byte, Short, Character, or

Integer, it is unboxed. If the resulting value is narrower than
int, it is promoted to a value of type int by a widening
conversion.

• Otherwise, if the single operand is of type Long, Float, or
Double, it is unboxed.

• Otherwise, if the single operand is of a type narrower than
int, its value is promoted to a value of type int by a
widening conversion.

• Otherwise, the operand remains unchanged.
In other words, unary numeric promotion results in an
operand value that is either int or wider.

Numeric Promotion Context

Unary numeric promotion is applied in the
following expressions:

• operand of the unary arithmetic operators + and -

• array creation expression; e.g., new int[20],
where the dimension expression (in this case 20)
must evaluate to an int value

• indexing array elements; e.g., objArray['a'], where
the index expression (in this case 'a') must
evaluate to an int value

Numeric Promotion Context

Binary Numeric Promotion

Binary numeric promotion implicitly applies
appropriate widening primitive conversions so
that a pair of operands have the widest numeric
type of the two, which is always at least int.

This means that the resulting type of the operands
is at least int.

Numeric Promotion Context

Binary numeric promotion is applied in the
following expressions:

• operands of the arithmetic operators *, /, %, +, and -

• operands of the relational operators <, <=, >, and >=

• operands of the numerical equality operators == and !=

• operands of the conditional operator ? :, under certain
circumstances

Precedence and Associativity Rules
for Operators

• The operators are shown with decreasing precedence from the top of the table.

• Operators within the same row have the same precedence.

• Parentheses, (), can be used to override precedence and associativity.

• The unary operators, which require one operand, include the following: the
postfix increment (++) and decrement (--) operators from the first row, all the
prefix operators (+, -, ++, --, ~, !) in the second row, and the prefix operators
(object creation operator new, cast operator (type)) in the third row.

• The conditional operator (?:) is ternary, that is, requires three operands.

• All operators not listed above as unary or ternary, are binary, that is, require two
operands.

• All binary operators, except for the relational and assignment operators, associate
from left to right. The relational operators are nonassociative.

• Except for unary postfix increment and decrement operators, all unary opera-tors,
all assignment operators, and the ternary conditional operator associate from right
to left.

Precedence and Associativity Rules for Operators

Evaluation Order of Operands

• Left-Hand Operand Evaluation First

int b = 10;

System.out.println((b=3) + b);

the value printed will be 6 and not 13

• Operand Evaluation before Operation Execution
 Java guarantees that all operands of an operator are fully
evaluated before the actual operation is performed.

 This rule does not apply to the short-circuit conditional operators
&&, ||, and ?:.

• Left to Right Evaluation of Argument Lists

The Simple Assignment Operator =

<variable> = <expression>

which can be read as “the target, <variable>,
gets the value of the source, <expression>”.

The previous value of the target variable is
overwritten by the assignment operator =

Assigning Primitive Values

int j, k;

j = 10; // j gets the value 10.

j = 5; // j gets the value 5. Previous value is overwritten.

k = j; // k gets the value 5.

The assignment operator has the lowest precedence
allowing the expression on the right-hand side to be
evaluated before assignment.
int i;

i = 5; // i gets the value 5.

i = i + 1; // i gets the value 6.

 // + has higher precedence than =.

i = 20 - i * 2; // i gets the value 8: (20 - (i * 2))

Assigning References

Copying reference values by assignment creates
aliases.
Pizza pizza1 = new Pizza("Hot&Spicy");

Pizza pizza2 = new Pizza("Sweet&Sour");

pizza2 = pizza1;

Assigning a reference value does not create a copy of the
source object denoted by the reference variable on the
right-hand side.

Multiple Assignments

The assignment statement is an expression statement, which means that
application of the binary assignment operator returns the value of the
expression on the right-hand side.
int j, k;

j = 10; // j gets the value 10 which is returned

k = j; // k gets the value of j, which is 10,

 // and this value is returned

The last two assignments can be written as multiple assignments, illustrating
the right associativity of the assignment operator.
k = j = 10; // (k = (j = 10))

Multiple assignments are equally valid with references.
Pizza pizzaOne, pizzaTwo;

pizzaOne = pizzaTwo = new Pizza("Supreme"); // Aliases.

Example of operand evaluation order

int[] a = {10, 20, 30, 40, 50}; // an array of int

int index = 4;

a[index] = index = 2; // (1)

What is the value of index, and which array
element a[index] is assigned a value in the
multiple assignment statement at (1)?

Example of operand evaluation order

int[] a = {10, 20, 30, 40, 50}; // an array of int

int index = 4;

a[index] = index = 2; // (1)

What is the value of index, and which array element
a[index] is assigned a value in the multiple assignment
statement at (1)? The evaluation proceeds as follows:
a[index] = index = 2;

a[4] = index = 2;

a[4] = (index = 2); // index gets the value 2.

 // = is right associative.

a[4] = 2; // The value of a[4] is changed

 // from 50 to 2.

Arithmetic Operators: *, /, %, +, -

Unary + Addition - Subtraction

Binary * Multiplication / Division % Remainder

 + Addition - Subtraction

Range of Numeric Values

Integer arithmetic always returns a value that is in
range, except in the case of integer division by zero
and remainder by zero, which causes an
ArithmeticException

int tooBig = Integer.MAX_VALUE + 1;

// -2147483648 which is Integer.MIN_VALUE.

int tooSmall = Integer.MIN_VALUE - 1;

// 2147483647 which is Integer.MAX_VALUE.

Floating-Point Arithmetic

Certain floating-point operations result in values
that are out-of-range. Typically, adding or
multiplying two very large floating-point
numbers can result in an out-of-range value
which is represented by Infinity.

Attempting floating-point division by zero also
returns infinity.
System.out.println(4.0 / 0.0); // Prints: Infinity

System.out.println(-4.0 / 0.0); // Prints: -Infinity

Overflow and Underflow
in Floating-Point Arithmetic

Underflow and NaN

 Underflow occurs in the following situations:

• the result is between Double.MIN_VALUE (or Float.MIN_VALUE)
and zero; e.g., the result of (5.1E-324 - 4.9E-324). Underflow then
returns positive zero 0.0 (or 0.0F).

• the result is between -Double.MIN_VALUE (or -Float.MIN_VALUE)
and zero; e.g., the result of (-Double.MIN_VALUE * 1E-1).
Underflow then returns negative zero -0.0 (or -0.0F).

 Negative zero compares equal to positive zero, i.e.,
(-0.0 == 0.0) is true.

 Certain operations have no mathematical result, and are
represented by NaN

Strict Floating-Point Arithmetic:
strictfp

 Although floating-point arithmetic in Java is defined in accordance with the
IEEE-754 32-bit (float) and 64-bit (double) standard formats, the language
does allow JVM implementations to use other extended formats for
intermediate results.

 This means that floating-point arithmetic can give different results on such
JVMs, with possible loss of precision. Such a behavior is termed non-strict, in
contrast to being strict and adhering to the standard formats.

 To ensure that identical results are produced on all JVMs, the keyword
strictfp can be used to enforce strict behavior for floating-point
arithmetic. The modifier strictfp can be applied to classes, interfaces,
and methods.

 However, note that strictness is not inherited by the subclasses or
subinterfaces.

 Constant expressions are always evaluated strictly at compile time.

Unary Arithmetic Operators: -, +

• The unary operators have the highest precedence
of all the arithmetic operators.

int value = - -10; // (-(-10)) is 10

 Notice the blank needed to separate the unary
operators; otherwise, these would be interpreted as
the decrement operator --

 The unary operator + has no effect on the
evaluation of the operand value.

Multiplicative Binary Operators: *, /, %

Multiplication Operator: *
The multiplication operator * multiplies two numbers.
int sameSigns = -4 * -8; // result: 32

double oppositeSigns = 4.0 * -8.0; // result: -32.0

int zero = 0 * -0; // result: 0

Division Operator: /
The division operator / is overloaded. If its operands are integral, the operation
results in integer division.
int i1 = 4 / 5; // result: 0

int i2 = 8 / 8; // result: 1

double d1 = 12 / 8; // result: 1.0,

 //integer division, then widening conversion.
Remainder Operator: %
For integer remainder operation, where only integer operands are involved, evaluation of
the expression (x % y) always satisfies the following relation:

x == (x / y) * y + (x % y)

%

Calculating (7 % 5):

7 == (7 / 5) * 5 + (7 % 5)

 == (1) * 5 + (7 % 5)

 == 5 + (7 % 5)

2 == (7 % 5)

i.e., (7 % 5) is equal to 2

Calculating (7 % -5):

7 == (7 / -5) * -5 + (7 % -5)

 == (-1) * -5 + (7 % -5)

 == 5 + (7 % -5)

2 == (7 % -5)

i.e., (7 % -5) is equal to 2

Calculating (-7 % 5):

-7 == (-7 / 5) * 5 + (-7 % 5)

 == (-1) * 5 + (-7 % 5)

 == -5 + (-7 % 5)

-2 == (-7 % 5)

i.e., (-7 % 5) is equal to -2

Calculating (-7 % -5):

-7 == (-7 / -5) * -5 + (-7 % -5)

 == (1) * -5 + (-7 % -5)

 == -5 + (-7 % -5)

-2 == (-7 % -5)

i.e., (-7 % -5) is equal to -2

Remainder can only be negative if the dividend is negative, and the sign of the divisor is irrelevant

An ArithmeticException is thrown if the divisor evaluates to zero.

Floating-Point Remainder
Note that the remainder operator not only accepts
integral operands, but floating-point operands as well.
The floating-point remainder r is defined by the
relation:
r == a - (b * q)
where a and b are the dividend and the divisor,
respectively, and q is the integer quotient of (a/b).
double dr0 = 7.0 % 7.0; // 0.0

float fr1 = 7.0F % 5.0F; // 2.0F

double dr1 = 7.0 % -5.0; // 2.0

float fr2 = -7.0F % 5.0F; // -2.0F

double dr2 = -7.0 % -5.0; // -2.0

boolean fpRel = dr2 == (-7.0) - (-5.0) * (long)(-7.0 / -5.0);
// true

float fr3 = -7.0F % 0.0F; // NaN

Additive Binary Operators: +, -

Numeric Promotions in Arithmetic
Expressions

 Unary numeric promotion is applied to the
single operand of the unary arithmetic operators
- and +.

 When a unary arithmetic operator is applied
to an operand whose type is narrower than int,
the operand is promoted to a value of type int,
with the operation resulting in an int value.
byte b = 3; // int literal in range.

 // Narrowing conversion.

b = (byte) -b; // Cast required on assignment.

Numeric Promotion in Arithmetic
Expressions

public class NumPromotion {

 public static void main(String[] args) {

 byte b = 32;

 char c = ’z’; // Unicode value 122 (\u007a)

 short s = 256;

 int i = 10000;

 float f = 3.5F;

 double d = 0.5;

 double v = (d * i) + (f * - b) - (c / s); // (1)

 System.out.println("Value of v: " + v);

 }

}

Numeric Promotion in Arithmetic
Expressions

public class NumPromotion {

 public static void main(String[] args) {

 byte b = 32;

 char c = ’z’; // Unicode value 122 (\u007a)

 short s = 256;

 int i = 10000;

 float f = 3.5F;

 double d = 0.5;

 double v = (d * i) + (f * - b) - (c / s); // (1)

 System.out.println("Value of v: " + v);

 }

}

Value of v: 4888.0

Arithmetic Compound Assignment
Operators: *=, /=, %=, +=, -=

A compound assignment operator has the following
syntax:

<variable> <op>= <expression>

and the following semantics:
<variable> =

 (<type>)((<variable>) <op> (<expression>))

The type of the <variable> is <type> and the <variable>
is evaluated only once.

 Note the cast and the parentheses implied in the
semantics.

Arithmetic Compound Assignment
Operators

int i = 2;

i *= i + 4; // (1) Evaluated as i = (int) ((i) * (i + 4)).

Integer iRef = 2;

iRef *= iRef + 4;

// (2) Evaluated as iRef = (Integer) ((iRef) * (iRef + 4)).

byte b = 2;

b += 10; // (3) Evaluated as b = (byte) (b + 10).

b = b + 10; // (4) Will not compile. Cast is required.

The Binary
String Concatenation Operator +

Non-String operands are converted as follows:

• For an operand of a primitive data type, its value is first
converted to a reference value using the object creation
expression. A string representation of the reference value is
obtained as explained below for reference types.

• Values like true, false, and null are represented by string
representations of these literals. A reference variable with the
value null also has the string representation "null" in this context.

• For all reference value operands, a string representation is
constructed by calling the toString() method on the referred
object. Most classes override this method from the Object class
in order to provide a more meaningful string representation of
their objects.

Variable Increment and Decrement
Operators: ++, --

Prefix increment operator has the following
semantics:

++i adds 1 to the value in i, and stores the new
value in i. It returns the new value as the value of
the expression. It is equivalent to the following
statements:

i += 1;

result = i;

return result;

Variable Increment and Decrement
Operators: ++, --

Postfix increment operator has the following
semantics:
j++ adds 1 to the value in j, and stores the new
value in j. It returns the old value in j before the
new value is stored in j, as the value of the
expression. It is equivalent to the following
statements:
result = j;

j += 1;

return result;

Boolean Expressions

• Boolean expressions, when used as
conditionals in control statements, allow the
program flow to be controlled during
execution.

• Boolean expressions can be formed using
relational operators, equality operators,
bitwise operators, boolean logical operators,
conditional operators, the assignment
operator, and the instanceof operator

Relational Operators: <, <=, >, >=

a < b a less than b?

a <= b a less than or equal to b?

a > b a greater than b?

a >= b a greater than or equal to b?

Equality

• Primitive Data Value Equality: ==, !=

• Object Reference Equality: ==, !=

• Object Value Equality
– The Object class provides the method

public boolean equals(Object obj), which can be
overridden to give the right semantics of object value
equality.

– The default implementation of this method in the Object
class returns true only if the object is compared with
itself, i.e., as if the equality operator == had been used to
compare aliases of an object.

Boolean Logical Operators: !, ^, &, |

Boolean logical operators include:
• the unary operator ! (logical complement)
and
• The binary operators

– & (logical AND),
– | (logical inclusive OR), and
– ^ (logical exclusive OR, also called logical XOR).

 Boolean logical operators can be applied to boolean or
Boolean operands, returning a boolean value. The operators &, |,
and ^ can also be applied to integral operands to perform bitwise
logical operations

These operators always evaluate both the operands, unlike their
counterpart conditional operators && and ||

Boolean Logical Compound
Assignment Operators: &=, ^=, |=

• The left-hand operand must be a boolean
variable, and the right-hand operand must be
a boolean expression.

• An identity conversion is applied implicitly on
assignment.

Conditional Operators: &&, ||

The conditional operators && and || are similar
to their counterpart logical operators & and |,
except that their evaluation is short-circuited.

The Conditional Operator: ?:

The ternary conditional operator allows conditional expressions to
be defined. The operator has the following syntax:
<condition> ? <expression1> : <expression2>

If the boolean expression <condition> is true then <expression1> is
evaluated; otherwise, <expression2> is evaluated.
Of course, <expression1> and <expression2> must evaluate to
values of compatible types. The value of the expression evaluated is
returned by the conditional expression.
boolean leapYear = false;

int daysInFebruary = leapYear ? 29 : 28; // 28

The Conditional Operator: ?:

• The conditional operator is the expression
equivalent of the if-else statement.

• The conditional expression can be nested and
the conditional operator associates from right
to left:

(a?b?c?d:e:f:g) evaluates as (a?(b?(c?d:e):f):g)

Other Operators: new, [], instanceof

• The new operator is used to create objects,
i.e., instances of classes and arrays. It is used
with a constructor call to instantiate classes

• The [] notation is used to declare and
construct arrays and also to access array
elements

• The boolean, binary, and infix operator
instanceof is used to test the type of an object

