
Nested Type Declarations

Overview of Nested Type Declarations

• A class that is declared within another type declaration
is called a nested class.

• Similarly, an interface or an enum type that is declared
within another type declaration is called a nested
interface or a nested enum type, respectively.

• A top-level class, enum type, or interface is one that is
not nested. By a nested type we mean either a nested
class, a nested enum, or a nested interface.

Overview of Nested Type Declarations

• In addition to the top-level types, there are four
categories of nested classes, one of nested enum
types, and one of nested interfaces, defined by
the context these nested types are declared in:
static member classes, enums, and interfaces
non-static member classes
 local classes
anonymous classes

Inner Classes
The last three categories (non-static member classes, local
classes, anonymous classes) are collectively known as inner
classes.
An instance of an inner class may be associated with an
instance of the enclosing class.
• The instance of the enclosing class is called the

immediately enclosing instance.
• An instance of an inner class can access the members of its

immediately enclosing instance by their simple names.

Static member: class, enum, interface

• A static class can be instantiated like any ordinary
top-level class, using its full name. No enclosing
instance is required to instantiate a static
member class.

• An enum or an interface cannot be instantiated
with the new operator.

Note that there are no non-static member, local, or
anonymous interfaces.

Non-static member classes

• Defined as instance members of other classes,
just as fields and instance methods are
defined in a class.

• An instance of a non-static member class
always has an enclosing instance associated
with it.

Local classes

• Local classes can be defined in the context of
a block as in a method body or a local block,
just as local variables can be defined in a
method body or a local block

Anonymous classes

• Anonymous classes can be defined as
expressions and instantiated on the fly.

• An instance of a local (or an anonymous) class
has an enclosing instance associated with it, if
the local (or anonymous) class is declared in a
non-static context.

Example
class TLC { // (1) Top level class
 static class SMC {/*...*/} // (2) Static member class
 interface SMI {/*...*/} // (3) Static member interface
 class NSMC {/*...*/} // (4) Non-static member (inner) class
 void nsm() {
 class NSLC {/*...*/} // (5) Local(inner) class in non-static context
 }
 static void sm() {
 class SLC {/*...*/} // (6) Local (inner) class in static context
 }
 SMC nsf = new SMC() { // (7) Anonymous(inner) class in non-static context
 /*...*/

 };
 static SMI sf = new SMI() { // (8) Anonymous(inner) class in static
 // context

 /*...*/

 };
 enum SME {/*...*/} // (9) Static member enum
}

Static Member Types

• A static member class, enum type, or
interface comprises the same declarations as
those allowed in an ordinary top-level class,
enum type, or interface, respectively.

• A static member class must be declared
explicitly with the keyword static, as a static
member of an enclosing type.

Static Member Types

• Nested interfaces are considered implicitly
static, the keyword static can, therefore, be
omitted.

• Nested enum types are treated analogously to
nested interface in this regard: they are static
members.

Static Member Types

• The accessibility modifiers allowed for
members in an enclosing type declaration can
naturally be used for nested types.

• Static member classes, enum types and
interfaces can only be declared in top-level
type declarations, or within other nested
static members.

//Filename: ListPool.java

package smc;

public class ListPool { // (1) Top-level class

 public static class MyLinkedList { // (2) Static member class

 private interface ILink { } // (3) Static member interface

 public static class BiNode

 implements IBiLink { } // (4) Static member class

 }

 interface IBiLink extends MyLinkedList.ILink { } // (5) Static

 // member interface

}

//Filename: MyBiLinkedList.java

package smc;

public class MyBiLinkedList implements ListPool.IBiLink { // (6)

 ListPool.MyLinkedList.BiNode objRef1

 = new ListPool.MyLinkedList.BiNode(); // (7)

//ListPool.MyLinkedList.ILink ref; // (8) Compile-time error!

}

Comments on example

• Within the scope of its top-level class or interface, a
member class or interface can be referenced regardless of
its accessibility modifier and lexical nesting, as shown at
(5) in previous example. Its accessibility modifier (and
that of the types making up its full name) come into play
when it is referenced by an external client.

• The declaration at (8) in example will not compile
because the member interface ListPool.MyLinkedList.ILink
has private accessibility

Static Import
• There is seldom any reason to import nested types

from packages. It would undermine the encapsulation
achieved by such types.

• However, a compilation unit can use the import facility
to provide a shortcut for the names of member classes
and interfaces.

• Note that type import and static import of nested static
types is equivalent: in both cases, a type name is
imported.

Import and Static Import
//Filename: Client1.java

import smc.ListPool.MyLinkedList; // (1) Type import

public class Client1 {

 MyLinkedList.BiNode objRef1 = new MyLinkedList.BiNode(); // (2)

}

//Filename: Client2.java

import static smc.ListPool.MyLinkedList.BiNode; // (3) Static import

public class Client2 {

 BiNode objRef2 = new BiNode(); // (4)

}

class BiListPool implements smc.ListPool.IBiLink { }

 // (5) Not accessible!

Accessing Members in Enclosing Context

public class ListPool { // Top-level class

 public void messageInListPool() { // Instance method

 System.out.println("This is a ListPool object.");

 }

 private static class MyLinkedList { // (1) Static class

 private static int maxNumOfLists = 100; // Static variable

 private int currentNumOfLists; // Instance variable

 public static void messageInLinkedList() { // Static method

 System.out.println("This is MyLinkedList class.");

 }

 interface ILink { int MAX_NUM_OF_NODES = 2000; } // (2) Static interface

 protected static class Node implements ILink { // (3) Static class

 private int max = MAX_NUM_OF_NODES; // (4) Instance variable

 public void messageInNode() { // Instance method

 // int currentLists = currentNumOfLists; // (5) Not OK.

 int maxLists = maxNumOfLists;

 int maxNodes = max;

 // messageInListPool(); // (6) Not OK.

 messageInLinkedList(); // (7) Call static method

 }

 public static void main (String[] args) {

 int maxLists = maxNumOfLists; // (8)

 // int maxNodes = max; // (9) Not OK.

 messageInLinkedList(); // (10) Call static method

 }

 } // Node

 } // MyLinkedList

} // ListPool

Non-Static Member Classes
An instance of a non-static member class can only exist with an
instance of its enclosing class.
• This means that an instance of a non-static member class

must be created in the context of an instance of the
enclosing class.

• This also means that a non-static member class cannot have
static members. In other words, the non-static member class
does not provide any services, only instances of the class do.

• However, final static variables are allowed, as these are
constants.

Non-Static Member Classes

• Code in a non-static member class can directly
refer to any member (including nested) of any
enclosing class or interface, including private
members. No fully qualified reference is required.

• Since a non-static member class is a member of
an enclosing class, it can have any accessibility:
public, package/default, protected, or private.

Non-Static Member Classes

• A typical application of non-static member
classes is implementing data structures.

• For example, a class for linked lists could
define the nodes in the list with the help of a
non-static member class which could be
declared private so that it was not accessible
outside of the top-level class.

Instantiating Non-Static Member Classes
class MyLinkedList { // (1)

 private String message = "Shine the light"; // (2)

 public Node makeInstance(String info, Node next) { // (3)

 return new Node(info, next); // (4)

 }

 public class Node { // (5) NSMC

 // static int maxNumOfNodes = 100; // (6) Not OK.

 final static int maxNumOfNodes = 100; // (7) OK.

 private String nodeInfo; // (8)

 private Node next;

 public Node(String nodeInfo, Node next) { // (9)

 this.nodeInfo = nodeInfo;

 this.next = next;

 }

 public String toString() {

 return message + " in " + nodeInfo + " (" + maxNumOfNodes + ")";//(10)

 }

 }

}

public class ListClient { // (11)

 public static void main(String[] args) { // (12)

 MyLinkedList list = new MyLinkedList(); // (13)

 MyLinkedList.Node node1 = list.makeInstance("node1", null); // (14)

 System.out.println(node1); // (15)

// MyLinkedList.Node nodeX

// = new MyLinkedList.Node("nodeX", node1); // (16) Not OK.

 MyLinkedList.Node node2 = list.new Node("node2", node1); // (17)

 System.out.println(node2); // (18)

 }

}

Instantiating Non-Static Member Classes

A special form of the new operator is used to instantiate a non-static
member class:
<enclosing object reference>.new <non-static member
class constructor call>

• The <enclosing object reference> in the object creation expression
evaluates to an instance of the enclosing class in which the designated
non-static member class is defined.

• A new instance of the non-static member class is created and associated
with the indicated instance of the enclosing class.

• It is illegal to specify the full name of the non-static member class in the
constructor call, as the enclosing context is already given by the
<enclosing object reference>

Instantiating Non-Static Member Classes

Outer Object with Associated Inner
Objects

Accessing Members in Enclosing Context
An implicit reference to the enclosing object is always available in every method and
constructor of a non-static member class. A method can explicitly use this reference
with a special form of the this construct, as explained in the next example.
An example is shown at (10), where the field message from the enclosing class is
accessed in the non-static member class.

return message + " in " + nodeInfo + " (" + maxNumOfNodes + ")";//(10)

It is also possible to explicitly refer to members in the enclosing class, but this
requires special usage of the this reference. One might be tempted to write the
statement at (10) as follows:

return this.message + " in " + this.nodeInfo + " (" + this.maxNumOfNodes+")";

Accessing Members in Enclosing Context
An implicit reference to the enclosing object is always available in every method and
constructor of a non-static member class. A method can explicitly use this reference with a
special form of the this construct, as explained in the next example.
An example is shown at (10), where the field message from the enclosing class is accessed in
the non-static member class.

return message + " in " + nodeInfo + " (" + maxNumOfNodes + ")";//(10)

incorrect:

return this.message + " in " + this.nodeInfo + " (" + this.maxNumOfNodes+")";

correct:
return MyLinkedList.this.message + " in " + this.nodeInfo +

 " (" + this.maxNumOfNodes + ")";

The expression

<enclosing class name>.this

evaluates to a reference that denotes the
enclosing object (of the class <enclosing class
name>) of the current instance of a non-static
member class

Accessing Members in Enclosing Context

Accessing Hidden Members

• Fields and methods in the enclosing context can
be hidden by fields and methods with the same
names in the non-static member class.

• The special form of the this syntax can be used to
access members in the enclosing context,
somewhat analogous to using the keyword super
in subclasses to access hidden superclass
members.

class TLClass { // (1) TLC
 private String id = "TLClass "; // (2)
 public TLClass(String objId) { id = id + objId; } // (3)
 public void printId() { // (4)
 System.out.println(id);
 }
 class InnerB { // (5) NSMC
 private String id = "InnerB "; // (6)
 public InnerB(String objId) { id = id + objId; } // (7)
 public void printId() { // (8)
 System.out.print(TLClass.this.id + " : "); // (9) Refers to (2)
 System.out.println(id); // (10) Refers to (6)
 }
 class InnerC { // (11) NSMC
 private String id = "InnerC "; // (12)
 public InnerC(String objId) { id = id + objId; } // (13)
 public void printId() { // (14)
 System.out.print(TLClass.this.id + " : "); // (15) Refers to (2)
 System.out.print(InnerB.this.id + " : "); // (16) Refers to (6)
 System.out.println(id); // (17) Refers to (12)
 }
 public void printIndividualIds() { // (18)
 TLClass.this.printId(); // (19) Calls (4)
 InnerB.this.printId(); // (20) Calls (8)
 printId(); // (21) Calls (14)
 }
 } // InnerC
 } // InnerB
} // TLClass

public class OuterInstances { // (22)

 public static void main(String[] args) { // (23)

 TLClass a = new TLClass("a"); // (24)

 TLClass.InnerB b = a.new InnerB("b"); // (25)
 TLClass.InnerB.InnerC c1 = b.new InnerC("c1"); // (26)

 TLClass.InnerB.InnerC c2 = b.new InnerC("c2"); // (27)

 b.printId(); // (28)

 c1.printId(); // (29)

 c2.printId(); // (30)

 TLClass.InnerB bb = new TLClass("aa").new InnerB("bb"); // (31)

 TLClass.InnerB.InnerC cc = bb.new InnerC("cc"); // (32)

 bb.printId(); // (33)

 cc.printId(); // (34)

 TLClass.InnerB.InnerC ccc =

 new TLClass("aaa").new InnerB("bbb").new InnerC("ccc");// (35)

 ccc.printId(); // (36)

 System.out.println("------------");

 ccc.printIndividualIds(); // (37)

 }

}

Accessing Hidden Members
Output from the program:
TLClass a : InnerB b

TLClass a : InnerB b : InnerC c1

TLClass a : InnerB b : InnerC c2

TLClass aa : InnerB bb

TLClass aa : InnerB bb : InnerC cc

TLClass aaa : InnerB bbb : InnerC ccc

TLClass aaa

TLClass aaa : InnerB bbb

TLClass aaa : InnerB bbb : InnerC ccc

Inheritance Hierarchy and Enclosing
Context

• Inner classes can extend other classes, and
vice versa. An inherited field (or method) in an
inner subclass can hide a field (or method)
with the same name in the enclosing context.

• Using the simple name to access this member
will access the inherited member, not the one
in the enclosing context.

Inheritance Hierarchy and Enclosing
Context

Local Classes
• A local class is an inner class that is defined in a block. This

could be a method body, a constructor body, a local block, a
static initializer, or an instance initializer.

• Blocks in a non-static context have a this reference
available, which refers to an instance of the class containing
the block.

• An instance of a local class, which is declared in such a non-
static block, has an instance of the enclosing class
associated with it. This gives such a non-static local class
much of the same capability as a non-static member class.

Local Classes

Some restrictions that apply to local classes are

• Local classes cannot have static members, as they
cannot provide class-specific services. However, final
static fields are allowed, as these are constants.

• Local classes cannot have any accessibility modifier.
The declaration of the class is only accessible in the
context of the block in which it is defined, subject to
the same scope rules as for local variable declarations.

Accessing Declarations in Enclosing
Context

Accessing Local Declarations in the Enclosing Block

• A local class can access final local variables, final
method parameters, and final catch-block
parameters in the scope of the local context.

• Such final variables are also read-only in the local
class.

Accessing Declarations in Enclosing
Context

Accessing Members in the Enclosing Class

• A local class can access members inherited from
its superclass in the usual way

• Fields and methods in the enclosing class can be
hidden by member declarations in the local class.

Local Classes and Inheritance Hierarchy

Anonymous Classes
Anonymous classes combine the process of
definition and instantiation into a single step.
• Anonymous classes are defined at the location

they are instantiated, using additional syntax with
the new operator.

• As these classes do not have a name, an instance
of the class can only be created together with the
definition.

Anonymous Classes

Extending an Existing Class
new <superclass name> (<optional argument list>) {

 <member declarations>

}

Implementing an Interface
new <interface name>() { <member declarations> }

Any questions?

