
Localization, Pattern
Matching, and Formatting

The java.util.Locale Class

• Adapting programs so that they have global
awareness of such differences is called
internationalization (a.k.a., "in8ln").

• A locale represents a specific geographical,
political, or cultural region. Its two most
important attributes are language and
country.

The java.util.Locale Class

• Certain classes in the Java Standard Library
provide locale-sensitive operations. For
example, they provide methods to format
values that represent dates, currency and
numbers according to a specific locale.

• Developing programs that are responsive to a
specific locale is called localization.

The java.util.Locale Class

A locale is represented by an instance of the
class java.util.Locale. Many locale-sensitive
methods require such an instance for their
operation. A locale object can be created using
the following constructors:
Locale(String language)

Locale(String language, String country)

The java.util.Locale Class

The java.util.Locale Class

The java.util.Locale Class

The Locale class provides a get and set method
to manipulate the default locale:
static Locale getDefault()

static void setDefault(Locale newLocale)

The java.util.Locale Class
String getDisplayCountry()

String getDisplayCountry(Locale inLocale)
Returns a name for the locale’s country that is appropriate for display to the user, depending on the
default locale in the first method or the inLocale argument in the second method.

String getDisplayLanguage()

String getDisplayLanguage(Locale inLocale)
Returns a name for the locale’s language that is appropriate for display to the user, depending on the
default locale in the first method or the inLocale argument in the second method.

String getDisplayName()

String getDisplayName(Locale inLocale)
Returns a name for the locale that is appropriate for display.

The java.util.Locale Class
• A locale is an immutable object, having two sets

of get methods to return the display name of the
country and the language in the locale.

• The first set returns the display name of the
current locale according to the default locale,
while the second set returns the display name of
the current locale according to the locale
specified as argument in the method call.

import java.util.Locale;

public class LocalesEverywhere {

 public static void main(String[] args) {

 Locale locDF = Locale.getDefault();

 Locale locNO = new Locale("no", "NO"); // Locale: Norwegian/Norway

 Locale locFR = new Locale("fr", "FR"); // Locale: French/France

 // Display country name for Norwegian locale:

 System.out.println("In " + locDF.getDisplayCountry() + "(default)" +

 ": " + locNO.getDisplayCountry());

 System.out.println("In " + locNO.getDisplayCountry() +

 ": " + locNO.getDisplayCountry(locNO));

 System.out.println("In " + locFR.getDisplayCountry() +

 ": " + locNO.getDisplayCountry(locFR));

 // Display language name for Norwegian locale:

 System.out.println("In " + locDF.getDisplayCountry() + "(default)" +

 ": " + locNO.getDisplayLanguage());

 System.out.println("In " + locNO.getDisplayCountry() +

 ": " + locNO.getDisplayLanguage(locNO));

 System.out.println("In " + locFR.getDisplayCountry() +

 ": " + locNO.getDisplayLanguage(locFR));

 }

}

Example’s result
Output from the program:
In United Kingdom(default): Norway
In Norway: Norge
In France: Norvège
In United Kingdom(default): Norwegian
In Norway: norsk
In France: norvégien

The java.util.Date Class

• The Date class represents time as a long
integer which is the number of milliseconds
measured from January 1, 1970 00:00:00.000
GMT.

• This starting point is called the epoch. The
long value used to represent a point in time
comprises both the date and the time of day.

The java.util.Date Class
The Date class provides the following constructors:
Date()

Date(long milliseconds)

The default constructor returns the current date and time of day.
The second constructor returns the date/time corresponding to
the specified milliseconds after the epoch.
The Date class has mostly deprecated methods, and provides
date operations in terms of milliseconds only. However, it is
useful for printing the date value in a standardized long format

The java.util.Date Class

The toString() method (called implicitly in the
print statements) prints the date value in a long
format. The date value can be manipulated as a
long integer, and a negative long value can be
used to represent a date before the epoch.

import java.util.Date;

public class UpToDate {

 public static void main(String[] args) {

 // Get the current date:

 Date currentDate = new Date();

 System.out.println("Date formatted: " + currentDate);

 System.out.println("Date value in milliseconds: " + currentDate.getTime());

 // Create a Date object with a specific value of time measured

 // in milliseconds from the epoch:

 Date date1 = new Date(1200000000000L);

 // Change the date in the Date object:

 System.out.println("Date before adjustment: " + date1);

 date1.setTime(date1.getTime() + 1000000000L);

 System.out.println("Date after adjustment: " + date1);

 // Compare two dates:

 String compareStatus = currentDate.after(date1) ? "after" : "before";

 System.out.println(currentDate + " is " + compareStatus + " " + date1);

 // Set a date before epoch:

 date1.setTime(-1200000000000L);

 System.out.println("Date before epoch: " + date1);

 }

}

Example’s result

Date formatted: Wed Mar 05 00:37:28 EST 2008

Date value in milliseconds: 1204695448609

Date before adjustment: Thu Jan 10 16:20:00 EST 2008

Date after adjustment: Tue Jan 22 06:06:40 EST 2008

Wed Mar 05 00:37:28 EST 2008 is after Tue Jan 22
06:06:40 EST 2008

Date before epoch: Tue Dec 22 21:40:00 EST 1931

The java.util.Calendar Class
• A calendar represents a specific instant in time

that comprises a date and a time of day.
• The abstract class java.util.Calendar provides a

rich set of date operations to represent and
manipulate many variations on date/time
representation.

• However, the locale-sensitive formatting of the
calendar is delegated to the DateFormat class

Static Factory Methods
to Create a Calendar

static Calendar getInstance()

static Calendar getInstance(Locale loc)

The first method returns a calendar with the current
date/time using the default time zone and default locale.

The second returns a calendar with the current date/time
using the default time zone and specified locale.

Interoperability with the Date Class

Date getTime()

Returns the date/time of the calendar in a Date
object, as an offset in milliseconds from the epoch.

void setTime(Date date)

Sets the current calendar’s date/time from the
value of the specified date.

Selected get and set Methods

Information in a calendar is accessed via a field
number. The Calendar class defines field numbers
for the various fields (e.g., year, month, day, hour,
minutes, seconds) in a calendar.

Selected get and set Methods

Manipulating a Calendar
System.out.println(calendar.getTime());

// Tue Nov 29 10:20:03 EET 2011

calendar.add(Calendar.MONTH, 13);

// Add 13 more months

System.out.println(calendar.getTime());

// Sat Dec 28 10:20:03 EET 2012

Comparing Calendars

int compareTo(Calendar anotherCalendar)

Implements Comparable<Calendar>, thus calendars can be
compared (as offsets in milliseconds from the epoch).

The java.text.DateFormat Class

• For dealing with text issues like formatting and
parsing dates, time, currency and numbers,
the Java Standard Library provides the
java.text package.

• The abstract class DateFormat in this package
provides methods for formatting and parsing
dates and time.

Static Factory Methods to Create a
Date/Time Formatter

• The class DateFormat provides formatters for dates, time of
day, and combinations of date and time for the default
locale or for a specified locale.

• The factory methods provide a high degree of flexibility
when it comes to mixing and matching different formatting
styles and locales. However, the formatting style and the
locale cannot be changed after the formatter is created.

• The factory methods generally return an instance of the
concrete class SimpleDateFormat, which is a subclass of
DateFormat.

Static Factory Methods to Create a
Date/Time Formatter

static DateFormat getInstance()

Returns a default date/time formatter that uses
the DateFormat.SHORT style for

both the date and the time

Static Factory Methods to Create a
Date/Time Formatter

static DateFormat getDateInstance()

static DateFormat getDateInstance(int dateStyle)

static DateFormat getDateInstance(int dateStyle,

 Locale loc)

These three methods return a formatter for
dates.

Static Factory Methods to Create a
Date/Time Formatter

static DateFormat getTimeInstance()

static DateFormat getTimeInstance(int timeStyle)

static DateFormat getTimeInstance(int timeStyle,

 Locale loc)

These three methods return a formatter for time
of day.

Static Factory Methods to Create a
Date/Time Formatter

static DateFormat getDateTimeInstance()

static DateFormat getDateTimeInstance(
 int dateStyle, int timeStyle)

static DateFormat getDateTimeInstance(
 int dateStyle, int timeStyle, Locale loc)

The last three methods return a formatter for date and time. The no-
argument methods return a formatter in default style(s) and in default
locale.

Formatting Styles for Date and Time

Formatting Dates

• A date/time formatter can be applied to a
Date object by calling the format() method.

• The value of the Date object is formatted
according to the formatter used.

import java.text.DateFormat;

import java.util.*;

class UsingDateFormat {

 public static void main(String[] args) {

 // Create some date/time formatters:

 DateFormat[] dateTimeFormatters = new DateFormat[] {

 DateFormat.getDateTimeInstance(DateFormat.FULL, DateFormat.FULL,

 Locale.US),

 DateFormat.getDateTimeInstance(DateFormat.LONG, DateFormat.LONG,

 Locale.US),

 DateFormat.getDateTimeInstance(DateFormat.MEDIUM, DateFormat.MEDIUM,

 Locale.US),

 DateFormat.getDateTimeInstance(DateFormat.SHORT, DateFormat.SHORT,

 Locale.US)

 };

String[] styles = { "FULL", "LONG", "MEDIUM", "SHORT" }; // Style names:

Date date = new Date(); // Format current date/time using different date
formatters:

 int i = 0;

 for(DateFormat dtf : dateTimeFormatters)

 System.out.printf("%-6s: %s%n", styles[i++], dtf.format(date));

 }

}

Output from the program:

FULL : Tuesday, November 29, 2011 10:48:19 AM EET

LONG : November 29, 2011 10:48:19 AM EET

MEDIUM: Nov 29, 2011 10:48:19 AM

SHORT : 11/29/11 10:08 AM

FULL : 29 Ноябрь 2011 г. 10:48:19 EET

LONG : 29 Ноябрь 2011 г. 10:48:19 EET

MEDIUM: 29.11.2011 0:48:19

SHORT : 29.11.11 0:48

Parsing Strings to Date/Time

Although we have called it a date/time
formatter, the instance returned by the factory
methods mentioned earlier is also a parser that
converts strings into date/time values.

Parsing Strings to Date/Time

Example illustrates the parsing of strings to date/time
values. It uses the Norwegian locale defined at (1).

Four locale-specific date formatters are created at (2).
Each one is used to format the current date and the
resulting string is parsed back to a Date object:
String strDate = df.format(date); // (4)

Date parsedDate = df.parse(strDate); // (5)

Parsing Strings to Date/Time

The string is parsed according to the locale
associated with the formatter.

Being lenient during parsing means allowing
values that are incorrect or incomplete.

Lenient parsing is illustrated at (6):
System.out.println("32.01.08|" +

dateFormatters[0].parse("32.01.08|"));

Managing the Calendar and the
Number Formatter

• Each date/time formatter has a Calendar that is used to
produce the date/time values from the Date object. In
addition, a formatter has a number formatter
(NumberFormat) that is used to format the date/time
values.

• The calendar and the number formatter are associated
when the date/time formatter is created, but they can
also be set programmatically by using the methods
shown below.

Managing the Calendar and the
Number Formatter

void setCalendar(Calendar calendar)

Set the calendar to use for values of date and time. Otherwise, the default
calendar for the default or specified locale is used.
Calendar getCalendar()

Get the calendar associated with this date/time formatter.
void setNumberFormat(NumberFormat numberFormatter)

Set the number formatter to use for values of date and time.
NumberFormat getNumberFormat()

Get the number formatter associated with the date/time formatter.

The java.text.NumberFormat Class

• The abstract class NumberFormat provides
methods for formatting and parsing numbers
and currency values.

• Using a NumberFormat is in many ways similar
to using a DateFormat.

Static Factory Methods to Create a
Number Formatter

• The NumberFormat class provides factory methods for creating
locale-sensitive formatters for numbers and currency values.

• However, the locale cannot be changed after the formatter is
created.

• The factory methods return an instance of the concrete class
java.text.DecimalFormat or an instance of the final class
java.util.Currency for formatting numbers or currency values,
respectively.

• Although we have called the instance a formatter, it is also a
parser—analogous to using a date/time formatter

Static Factory Methods to Create a
Number Formatter

static NumberFormat getNumberInstance()

static NumberFormat getNumberInstance(Locale loc)

static NumberFormat getCurrencyInstance()

static NumberFormat getCurrencyInstance(Locale loc)

The first two methods return a general formatter for
numbers, i.e., a number formatter.

The next two methods return a formatter for currency
amounts, i.e., a currency formatter.

Formatting Numbers and Currency
The following code shows how we can create a number formatter for the
Norwegian locale and use it to format numbers according to this locale.
Note the grouping of the digits and the decimal sign used in formatting according
to this locale.
Double num = 12345.6789;

Locale locNOR = new Locale("no", "NO"); // Norway

NumberFormat nfNOR =
 NumberFormat.getNumberInstance(locNOR);

String formattedNumStr = nfNOR.format(num);

System.out.println(formattedNumStr); // 12 345,679

Formatting Numbers and Currency
The following code shows how we can create a currency formatter for
the Norwegian locale, and use it to format currency values according
to this locale. Note the currency symbol and the grouping of the digits,
with the amount being rounded to two decimal places.

NumberFormat cfNOR =
 NumberFormat.getCurrencyInstance(locNOR);

String formattedCurrStr = cfNOR.format(num);

System.out.println(formattedCurrStr);
 // kr 12 345,68

Formatting Numbers and Currency
String format(double d)

String format(long l)

Formats the specified number and returns the resulting string.

Currency getCurrency()

void setCurrency(Currency currency)

The first method returns the currency object used by the formatter.
The last method allows the currency symbol to be set explicitly in the
currency formatter, according to the ISO 4217 currency codes.
For example, we can set the Euro symbol in a fr_France currency
formatter with this method.

Parsing Strings to Numbers

A number formatter can be used to parse strings
that are textual representations of numeric
values. The following code shows the Norwegian
number formatter from above being used to
parse strings.
out.println(nfNOR.parse("9876.598")); // 9876

out.println(nfNOR.parse("9876,598")); // (2) 9876.598

Specifying the Number of Digits
void setMinimumIntegerDigits(int n)

int getMinimumIntegerDigits()

void setMaximumIntegerDigits(int n)

int getMaximumIntegerDigits()

void setMinimumFractionDigits(int n)

int getMinimumFractionDigits()

void setMaximumFractionDigits(int n)

int getMaximumFractionDigits()

Sets or gets the minimum or maximum number of digits to be allowed in the
integer or decimal part of a number.

String Pattern Matching
Using Regular Expressions

Regular Expression Fundamentals

The simplest form of a pattern is a character or a
sequence of characters that matches itself.

The pattern o, comprising the character o, will only match
itself in the target string (i.e., the input).
Index: 01234567890123456789012345678901234567

Target: All good things come to those who wait

Pattern: o

Match:

(5,5:o)(6,6:o)(17,17:o)(22,22:o)(26,26:o)(32,32:o)

Regular Expression Fundamentals
The characters in the target are read from left to
right sequentially and matched against the pattern.
A match is announced when the pattern matches a
particular occurrence of (zero or more) characters
in the target. Six matches were found for the
pattern o in the given target.
A match is shown in the following notation:
(start_index,end_index:group)

Regular Expression Fundamentals

The example below searches for the pattern who in
the given target, showing that three matches were
found:
Index: 012345678901234567890123456789012345678

Target: Interrogation with who, whose and whom.

Pattern: who

Match: (19,21:who)(24,26:who)(34,36:who)

Regular Expression Fundamentals

The regular expression notation uses a number of
metacharacters (\, [], -, ^, $, ., ?, *, +, (), |) to define
its constructs, i.e., these characters have a special
meaning when used in a regular expression.

A character is often called a non-metacharacter
when it is not supposed to have any special
meaning.

Characters
• The pattern \t will match a tab character in the input, and

the pattern \n will match a newline in the input.
• Since the backslash (\) is a metacharacter, we need to

escape it (\\) in order to use it as a non-metacharacter in a
pattern.

• Any metacharacter in a pattern can be escaped with a
backslash (\).

• Note the similarity with escape sequences in Java strings,
which also use the \ character as the escape character

Character Classes
• The notation [] can be used to define a pattern that

represents a set of characters, called a character class.
• A ^ character is interpreted as a metacharacter when

specified immediately after the [character. In this
context, it negates all the characters in the set.
Anywhere else in the [] construct, it is a
non-metacharacter.

• The pattern [^aeiouAEIOU] represents the set of all
characters that excludes all vowels

Character Classes
• The ‘-’ character is used to specify intervals inside

the [] notation. If the interval cannot be
determined for a ‘-’ character, it is treated as a
non-metacharacter.

• For example, in the pattern [-A-Z], the first ‘-’
character is interpreted as a non-metacharacter,
but the second occurrence is interpreted as a
metacharacter that represents an interval.

Selected Character Classes

Selected Predefined Character Classes

Selected Predefined Character Classes

0123456789012345678901234567890123456789012345678901234567890

Who is who? Whose is it? To whom it may concern. How are you?

Pattern: .[Hh]o

Match: (0,2:Who)(7,9:who)(12,14:Who)(28,30:who)(48,50: Ho)

012345678901234567890

01-03-49 786 09-09-09

Pattern: \d\d-\d\d-\d\d

Match: (0,7:01-03-49)(13,20:09-09-09)

Boundary Matchers

Sometimes we are interested in finding a pattern match
at either the beginning or the end of a string/line. This
can be achieved by using boundary matchers (also
called anchors), as shown in Table

Boundary Matchers
Index: 01234567890123456789012345678

Target: Who is who? Who me? Who else?

Pattern: \?$

Match: (28,28:?)

Logical Operators

Selected Logical Operators

Logical Operators
The logical operators are shown in increasing order of
precedence, analogous to the logical operators in boolean
expressions. Here is an example that uses all three logical
operators for recognizing any case-insensitive occurrence
of Java or C++ in the input:
Index: 01234567890123456789012345678901

Target: JaVA jAvA C++ jAv c+++1 javan C+

Pattern: ([Jj][aA][vV][aA])|([Cc]\+\+)

Match:
(0,3:JaVA)(5,8:jAvA)(10,12:C++)(18,20:c++)(24,27:java)

Quantifiers
Quantifiers are powerful operators that repeatedly try to match
a regular expression with the remaining characters in the input.
These quantifiers (also called repetition operators) are defined
as follows:
• R?, that matches the regular expression R zero or one time.
• R*, that matches the regular expression R zero or more times.
• R+, that matches the regular expression R one or more times.

Quantifiers

The pattern a? is matched with a target string in the
following example:
Index: 012345

Target: banana

Pattern: a?

Match:(0,0:)(1,1:a)(2,2:)(3,3:a)(4,4:)(5,5:a)(6,6:)

Examples

The pattern \d\d?-\d\d?-\d\d? is used as a simplified
date format in the following example.

The regular expression \d\d? represents any one or
any two digits.
Index: 01234567890123456789012345678901

Target: 01-3-49 23-12 9-09-09 01-01-2010

Pattern: \d\d?-\d\d?-\d\d?

Match: (0,6:01-3-49)(14,20:9-09-09)(22,29:01-01-20)

Examples
The pattern a* is interpreted as a non-zero sequence of a’s or
as the empty string (meaning no a’s). The engine returns an
empty string as the match, when the character in the input
cannot be a part of a sequence of a’s.
Index: 01234567

Target: baananaa

Pattern: a*

Match:
(0,0:)(1,2:aa)(3,3:)(4,4:a)(5,5:)(6,7:aa)(8,8:)

Examples
The pattern (0|[1-9]\d*)\.\d\d recognizes all non-zero-
leading, positive floating-point numbers that have at least one
digit in the integral part and exactly two decimal places.
Note that the regular expression \d* is equivalent to the
regular expression [0-9]*.
Index: 0123456789012345678901234567890

Target: .50 1.50 0.50 10.50 00.50 1.555

Pattern: (0|[1-9]\d*)\.\d\d

Match: (4,7:1.50)(9,12:0.50)(14,18:10.50)

 (21,24:0.50)(26,29:1.55)

Examples
The pattern a+ is interpreted as a non-zero sequence of
a’s, i.e., at least one a. Compare the results below with
the results for using the pattern a* above on the same
target. No empty strings are returned when an a cannot
be matched in the target.
Index: 01234567

Target: baananaa

Pattern: a+

Match: (1,2:aa)(4,4:a)(6,7:aa)

Examples
The regular expression \d+ represents all permutations of digits. The
pattern \d+.\d+ represents all positive floating-point numbers that
have at least one digit in the integral part and at least one digit in the
fraction part.
Note that \d+ is equivalent to [0-9]+.
Index: 01234567890123456789012345678

Target: .50 1.50 0. 10.50 00.50 1.555

Pattern: \d+\.\d+

Match:
(4,7:1.50)(12,16:10.50)(18,22:00.50)(24,28:1.555)

Greedy Quantifiers

• The quantifiers presented above are called
greedy quantifiers. Such a quantifier reads as
much input as possible, and backtracks if
necessary, to match as much of the input as
possible.

• In other words, it will return the longest
possible match.

Example
The example below illustrates greediness. The pattern <.+> is supposed to
recognize a tag, i.e., a non-zero sequence of characters enclosed in angle
brackets (< >).
The example below shows that only one tag is found in the target. The greedy
quantifier + returns the longest possible match in the input.

012345678901234567890123456789012345678901234

My <>very<> <emphasis>greedy</emphasis> regex

Pattern: <.+>

Match:

(3,38:<>very<> <emphasis>greedy</emphasis>)

Reluctant (Lazy) Quantifiers
• A reluctant quantifier (also called lazy quantifier)

only reads enough of the input to match the
pattern. Such a quantifier will apply its regular
expression as few times as possible, only
expanding the match as the engine backtracks to
find a match for the overall regular expression.

• In other words, it will return the shortest possible
match.

Reluctant (Lazy) Quantifiers
The example below illustrates reluctantness/laziness. The pattern <.+?> uses
the reluctant quantifier +?, and is supposed to recognize a tag as before.
The example below shows the result of applying the pattern to a target.
The reluctant quantifier +? returns the shortest possible match for each tag
recognized in the input.

012345678901234567890123456789012345678901234567

My <>very<> <emphasis>reluctant</emphasis> regex

Pattern: <.+?>

Match:
(3,10:<>very<>)(12,21:<emphasis>)(31,41:</emphasis>)

Reluctant (Lazy) Quantifiers
• We can improve the matching by using the trick shown in

this pattern: <[^>]+>.
• Since the match has two enclosing angle brackets, the

pattern negates the end angle bracket, creating a character
class that excludes the end angle bracket. The engine can
keep expanding the tag name as long as no end angle
bracket is found in the input. When this bracket is found in
the input, a match can be announced, without incurring the
penalty of backtracking.

• Note that the pattern below is using the greedy quantifier +

Example
01234567890123456789012345678901234567890123456

My <>very<> <emphasis>powerful</emphasis> regex

Pattern: <[^>]+>

Match: (12,21:<emphasis>)(30,40:</emphasis>)

 Possessive Quantifiers
• Lastly, there are the possessive quantifiers that

always consume the entire input, and then go for
one make-or-break attempt to find a match.

• A possessive quantifier never backtracks, even if
doing so would succeed in finding a match.

• There are certain situations where possessive
quantifiers can outperform the other types of
quantifiers

Quantifier Classification

Escaping Metacharacters
• A regular expression can be specified as a string expression

in a Java program. In the declaration below, the string literal
"who" contains the pattern who.

String p1 = "who"; // regex: who

• The pattern \d represents a single digit character. If we are
not careful in how we specify this pattern in a string literal,
we run into trouble.

String p2 = "\d";
// Java compiler: Invalid escape sequence!

Escaping Metacharacters
• For every backslash in a regular expression, we need to escape it in the

string literal, i.e. specify it as a backslash pair (\\).
• This ensures that the Java compiler accepts the string literal, and the

string will contain only one backslash for every backslash pair that is
specified in the string literal.

• A backslash contained in the string is thus interpreted correctly as a
backslash in the regular expression.

String p3 = "\\d"; // regex: \d

String p4 = "\\."; // regex: \.
 (i.e. the . non-metacharacter)

String p5 = "."; // regex: .
 (i.e. the . metacharacter)

Escaping Metacharacters
If we want to use a backslash as a non-metacharacter in a regular
expression, we have to escape the backslash (\), i.e use the pattern \\.
In order to escape these two backslashes in a string literal, we need to
specify two consecutive backslash pairs (\\\\).
Each backslash pair becomes a single backslash inside the string,
resulting in the two pairs becoming a single backslash pair, which is
interpreted correctly in the regular expression, as the two backslash
characters represent a backslash non-metacharacter.
String nonMetaBackslash = "\\\\"; // regex: \\
 (i.e. the \ non-metacharacter)

Examples

Each backslash in the regular expression is escaped
in the string literal.
String p6 = "\\d\\d-\\d\\d-\\d\\d";

// regex: \d\d-\d\d-\d\d

String p7 = "\\d+\\.\\d+";

// regex: \d+\.\d+

String p8 = "(^[a-z])|(\\?$)";

// regex: (^[a-z])|(\?$)

The java.util.regex.Pattern Class

The two classes Pattern and Matcher in the
java.util.regex package embody the paradigm
for working efficiently with regular expressions
in Java.

The java.util.regex.Pattern Class
1. Compiling the regular expression string into a Pattern object which
constitutes the compiled representation of the regular expression
(i.e., a pattern) mentioned earlier:
Pattern pattern = Pattern.compile(regexStr);

2. Using the Pattern object to obtain a Matcher (i.e., an engine) for applying
the pattern to a specified input of type java.lang.CharSequence:
Matcher matcher = pattern.matcher(input);

3. Using the operations of the matcher to apply the pattern to the input:
boolean eureka = matcher.matches();

Compiling a Pattern

The methods below can be used to compile a
regular expression string into a pattern and to
retrieve the regular expression string from the
pattern, respectively.
String regexStr = "\\d\\d-\\d\\d-\\d\\d";

// regex: \d\d-\d\d-\d\d

Pattern datePattern = Pattern.compile(regexStr);

Compiling a Pattern
static Pattern compile(String regexStr)

Compiles the specified regular expression string into a pattern. Throws the
unchecked PatternSyntaxException if the regular expression is invalid.
When the source is line-oriented, it is recommended to use the overloaded
compile() method that additionally takes the argument Pattern.MULTILINE.

String pattern()

Returns the regular expression string from which this pattern was compiled.

Creating a Matcher

The matcher() method returns a Matcher, which is
the engine that does the actual pattern matching.
This method does not apply the underlying pattern to
the specified input. The matcher provides special
operations to actually do the pattern matching.
Matcher dateMatcher =

datePattern.matcher("01-03-49 786 09-09-09");

The Pattern class method matches
• The Pattern class also provides a static convenience method that executes

all the steps outlined above for pattern matching. The regular expression
string and the input are passed to the static method matches(), which
does the pattern matching on the entire input.

• The regular expression string is compiled and the matcher is created each
time the method is called.

• Calling the matches() method is not recommended if the pattern is to be
used multiple times.

boolean dateFound =
Pattern.matches("\\d\\d-\\d\\d-\\d\\d", "01-03-49");
// true

The Pattern class methods
Matcher matcher(CharSequence input)

Creates a matcher that will match the specified input against
this pattern.
static boolean matches(
 String regexStr,

 CharSequence input)

Compiles the specified regular expression string and attempts
to match the specified input against it. The method only
returns true if the entire input matches the pattern.

Splitting
• The normal mode of pattern matching is to find matches

for the pattern in the input.
• In other words, the result of pattern matching is the

sequences of characters (i.e., the matches, also called
groups) that match the pattern.

• Splitting returns sequences of characters that do not match
the pattern.

• In other words, the matches are spliced out and the
sequences of non-matching characters thus formed from
the input are returned in an array of type String.

Splitting

The pattern is used as a delimiter to tokenize the
input. The token in this case is a sequence of
non-matching characters, possibly the empty
string.

The classes StringTokenizer and Scanner in the
java.util package also provide the functionality
for tokenizing text-based input.

Splitting
The example below shows the results from splitting an input on a given
pattern. The input is a ‘|’-separated list of names. The regular
expression string is "\\|", where the metacharacter | is escaped in
order to use it as a non-metacharacter.
Splitting the given input according to the specified regular expression,
results in the array of String shown below.
Input: "tom|dick|harry" Split: "\\|"

Results: { "tom", "dick", "harry" }

The split() method can be called on a pattern to create an array by
splitting the input according to the pattern.

Splitting
Each successful application of the pattern, meaning each
match of the pattern delimiter in the input, results in a split of
the input, with the non-matched characters before the match
resulting in a new element in the array, and any remaining
input being returned as the last element of the array.

String[] split(CharSequence input, int limit)

Splits the specified input around matches of this pattern. The
limit determines how many times this pattern will be applied
to the input to create the array.

Implications of the Limit Value
in the split() Method

The java.util.regex.Matcher Class

• A Matcher is an engine that performs match
operations on a character sequence by
interpreting a Pattern.

• A matcher is created from a pattern by
invoking the Pattern.matcher() method.

• Here we will explore the following three
modes of operation for a matcher

1. One-Shot Matching

Using the matches() method in the Matcher class to
match

the entire input sequence against the pattern.
Pattern pattern =

 Pattern.compile("\\d\\d-\\d\\d-\\d\\d");

Matcher matcher = pattern.matcher("01-03-49");

boolean isMatch = matcher.matches(); // true

matcher = pattern.matcher("1-3-49");

isMatch = matcher.matches(); // false

1. One-Shot Matching

The convenience method matches() in the Pattern
class in the last subsection calls the matches()
method in the Matcher class implicitly.

boolean matches()

Attempts to match the entire input sequence against
the pattern. The method returns true only if the entire
input matches the pattern.

2. Successive Matching

Using the find() method in the Matcher class to
successively apply the pattern on the input
sequence to look for the next match

Successive Matching
The main steps of successive matching using a matcher are somewhat analogous to
using an iterator to traverse a collection. These steps are embodied in the code below.
...
Pattern pattern = Pattern.compile(regexStr);

Matcher matcher = pattern.matcher(target);

while(matcher.find()) {

 ...

 String matchedStr = matcher.group();

 ...

}

…

Successive Matching
• Once a matcher has been obtained, the find() method of the

Matcher class can be used to find the next match in the input
(called target in the code).

• The find() returns true if a match was found.
• If the previous call to the find() method returned true, and the

matcher has not been reset since then, the next call to the find()
method will advance the search in the target for the next match
from the first character not matched by the previous match.

• If the previous call to the find() returned false, no match was found,
and the entire input has been exhausted.

Successive Matching
boolean find()

Attempts to find the next match in the input that matches the pattern. The
first call to this method, or a call to this method after the matcher is reset,
always starts the search for a match at the beginning of the input.
String group()

Returns the characters (substring) in the input that comprise the previous
match.
int start()

int end()

The first method returns the start index of the previous match. The second
method returns the index of the last character matched, plus one. The values
returned by these two methods define a substring in the input.

Successive Matching
Matcher reset()

Matcher reset(CharSequence input)

The method resets this matcher, so that the next call to the find() method will
begin the search for a match from the start of the current input. The second
method resets this matcher, so that the next call to the find() method will
begin the search for a match from the start of the new input.
Matcher usePattern(Pattern newPattern)

Replaces the pattern used by this matcher with another pattern. This change
does not affect the search position in the input.
Pattern pattern()

Returns the pattern that is interpreted by this matcher.

3. Match-and-Replace Mode

Using the matcher to find matches in the input
sequence and replace them.

In this mode, the matcher allows the matched
characters in the input to be replaced with new
ones. Details of the methods used for this
purpose are given below.

Match-and-Replace Mode

The find() and the appendReplacement() methods
comprise the match-and-replace loop, with the
appendReplacement() method completing the
operation when the loop finishes.

Note that these methods use a StringBuffer, and
have not been updated to work with a
StringBuilder.

Match-and-Replace Mode
Matcher appendReplacement(
 StringBuffer sb,

 String replacement)

Implements a non-terminal append-and-replace step, i.e., it successively adds the
non-matched characters in the input, followed by the replacement of the match, to
the string buffer.
The find() method and the appendReplacement() method are used in lockstep to
successively replace all matches, and the appendTail() method is called as the last step
to complete the match-and-replace operation.

StringBuffer appendTail(StringBuffer sb)

Implements a terminal append-and-replace step, i.e., it copies the remaining
characters from the input to the string buffer, which is then returned.
It should be called after appendReplacement() operations have completed

Match-and-Replace Mode
String replaceAll(String replacement)

Replaces every subsequence of the input that matches the pattern with the
specified replacement string. The method resets the matcher first and returns
the result after the replacement.

String replaceFirst(String replacement)

Replaces the first subsequence of the input that matches the pattern with the
specified replacement string. The method resets the matcher first and returns
the result after the replacement.

The java.util.Scanner Class

A scanner reads characters from a source and converts
them into tokens. The source is usually a text-based input
stream containing formatted data. The formatted values in
the source are separated by delimiters, usually
whitespace.

A token is a sequence of characters in the source that
comprises a formatted value. A scanner generally uses
regular expressions to recognize tokens in the source input.

The java.util.Scanner Class

A point to note is that a scanner can also use regular
expressions to recognize delimiters, which are normally
discarded. Such a scanner is also called a tokenizer (also
called a lexical analyzer), and the process is called
tokenization.

Some scanners also convert the tokens into values of
appropriate types for further processing. Scanners with this
additional functionality are usually called parsers.

The java.util.Scanner Class

We will discuss two modes of operation for a
scanner:

• Tokenizing Mode, for tokenizing a stream of
formatted data values.

• Multi-Line Mode, for searching or finding
matches in line-oriented input.

Constructing a Scanner
A scanner must be constructed and associated with a
source before it can be used to parse text-based data. The
source of a scanner is passed as an argument in the
appropriate constructor call. Once a source is associated
with a scanner it cannot be changed.

Scanner(SourceType source)

Returns an appropriate scanner. SourceType can be a String,
a File, an InputStream, a ReadableByteChannel, or a
Readable (implemented by various Readers).

Lookahead Methods
The Scanner class provides two overloaded hasNext()
methods that accept a regular expression specified as a
string expression or as a Pattern, respectively. The next
token is matched against this pattern.
All primitive types and string literals have a pre-defined
format which is used by the appropriate lookahead
method.
All lookahead methods return true if the match with the
next token is successful.

Lookahead Methods
boolean hasNext()

boolean hasNext(Pattern pattern)

boolean hasNext(String pattern)

The first method returns true if this scanner has another (string)
token in its input.

The last two methods return true if the next token matches the
specified pattern or the pattern constructed from the specified
string, respectively.

Lookahead Methods
boolean hasNextIntegralType ()

boolean hasNextIntegralType(int radix)

Returns true if the next token in this scanner’s input can be interpreted as a
value of the integral type corresponding to IntegralType in the default or
specified radix.
The name IntegralType can be Byte, Short, Int or Long, corresponding to the
primitive types byte, short, int, or long, respectively.
boolean hasNextFPType()

Returns true if the next token in this scanner’s input can be interpreted as a
value of the floating-point type corresponding to FPType.
The name FPType can be Float or Double, corresponding to the types float or
double, respectively.

Lookahead Methods
boolean hasNextBoolean()

Returns true if the next token in this scanner’s input
can be interpreted as a boolean value using a case
insensitive pattern created from the string
"true|false".
boolean hasNextLine()

Returns true if there is another line in the input of
this scanner

The java.util.Scanner class
A scanner uses white space as its default delimiter pattern to
identify tokens. The useDelimiters() method of the Scanner class
can be used to set a different delimiter pattern for the scanner
during parsing.
Note that a scanner uses regular expressions for two purposes: a
delimiter pattern to identify delimiter characters and a token
pattern to find a token in the input.
A scanner is able to read and parse any value that has been
formatted by a printf method, provided the same locale is used.
The useLocale() method of the Scanner class can be used to
change the locale used by a scanner.

The java.util.Scanner class
Pattern delimiter()

Scanner useDelimiter(Pattern pattern)

Scanner useDelimiter(String pattern)

The first method returns the pattern this scanner is currently using to match
delimiters. The last two methods set its delimiting pattern to the specified pattern
or to the pattern constructed from the specified pattern string, respectively.
Locale locale()

Scanner useLocale(Locale locale)

These methods return this scanner’s locale or set its locale to the specified locale,
respectively.
int radix()

Scanner useRadix(int radix)

These methods return this scanner’s default radix or set its radix to the specified
radix, respectively

Parsing the Next Token

Corresponding to the hasNext() methods, the
Scanner class provides two overloaded next()
methods that accept a regular expression as a
string expression or as a Pattern, respectively.
This pattern is used to find the next token.

Parsing the Next Token
• A call to a parse method first skips over any delimiters at the current position in

the source, and then reads characters up to the next delimiter.
• The scanner attempts to match the non-delimiter characters that have been

read against the pattern associated with the parse method.
• If the match succeeds, a token has been found, which can be parsed accordingly.
• The current position is advanced to the new delimiter character after the token.
• The upshot of this behavior is that if a parse method is not called when a

lookahead method reports there is a token, the scanner will not advance in the
input.

• In other words, tokenizing will not proceed unless the next token is “cleared.”
• A scanner will throw an InputMismatchException when it cannot parse the

input, and the current position will remain unchanged.

Parsing the Next Token
String next()

String next(Pattern pattern)

String next(String pattern)

The first method scans and returns the next token
as a String. The last two methods return the next
string in the input that matches the specified
pattern or the pattern constructed from the
specified string, respectively.

Parsing the Next Token
ReturnIntegralType nextIntegralType()

ReturnIntegralType nextIntegralType(int radix)
Returns the next token in the input as a value of primitive type corresponding to IntegralType. The name
IntegralType can be Byte, Short, Int, or Long, corresponding to the primitive types byte, short, int, or long,
respectively. The name ReturnIntegralType is the primitive type corresponding to the name IntegralType.

ReturnFPType nextFPType()
Returns the next token in the input as a value of the primitive type corresponding to FPType. The name
FPType can be Float or Double, corresponding to the primitive types float or double, respectively. The name
ReturnFPType is the primitive type corresponding to the name FPType.

boolean nextBoolean()
Returns the next token in the input as a boolean value.

String nextLine()
Advances this scanner past the current line and returns the input that was skipped.

Parsing Primitive Values
• To parse such values, we need to know what type of values

occur in what order in the input so that an appropriate
lookahead and a corresponding parse method can be used. We
also need to know what locale was used to format them and
which delimiters separate the individual values in the input.

• The order in which the different type of values occur in the
input is specified by the vararg parameter tokenTypes, whose
element type is the enum type TokenType. A call to the
method parse(), such as the one shown below, thus indicates
the order, the type and the number of values to expect in the
input.

Miscellaneous Scanner Methods
Scanner skip(Pattern pattern)

Scanner skip(String pattern)

These methods skip input that matches the specified pattern or the pattern constructed
from the specified string, respectively, ignoring any delimiters. If no match is found at
the current position, no input is skipped and a NoSuchElementException is thrown.
MatchResult match()

Returns the match result of the last scanning operation performed by this scanner.
IOException ioException()

Returns the IOException last thrown by this scanner’s underlying Readable object.
Scanner reset()

Resets this scanner to the default state with regard to delimiters, locale, and radix.
void close()

Closes this scanner. When a scanner is closed, it will close its input source if the source
implements the Closeable interface (implemented by various Channels, InputStreams,
Readers)

Multi-Line Mode

If the input is line-oriented, the scanner can be
used to perform search in the input one line at a
time.

The methods hasNextLine(), findInLine(), and
nextLine() form the trinity that implements the
multi-line mode of searching the input with a
pattern.

Multi-Line Mode

String findInLine(Pattern pattern)

String findInLine(String pattern)

These methods attempt to find the next occurrence
of the specified pattern or the pattern constructed
from the specified string, respectively, ignoring any
delimiters.

Formatting Values

Overview
The class java.util.Formatter provides the core support for formatted
text representation of primitive values and objects through its
overloaded format() methods:
format(String format, Object... args)

format(Locale l, String format, Object... args)

Writes a string that is a result of applying the specified format string to
the values in the vararg array args.
The resulting string is written to the destination object that is
associated with the formatter.

Formatting Values
• The classes java.io.PrintStream and java.io.PrintWriter

also provide an overloaded format() method with the
same signature for formatted output.

• These streams use an associated Formatter that sends
the output to the PrintStream or the PrintWriter,
respectively.

• However, the format() method returns the current
Formatter, PrintStream, or PrintWriter, respectively, for
these classes, allowing method calls to be chained.

Formatting Values
• The String class also provides an analogous format() method, but it

is static.
• Unlike the format() method of the classes mentioned earlier, this

static method returns the resulting string after formatting the
values.

• In addition, the classes PrintStream and PrintWriter provide the
following convenience methods:

printf(String format, Object... args)

printf(Locale l, String format, Object... args)

These methods delegate the formatting to the format() method in the
respective classes.

Defining Format Specifiers

The general syntax of a format specifier is as follows:

%[argument_index][flags][width][precision]conversion

Only the special character % and the formatting
conversion are not optional.

Defining Format Specifiers
• The occurrence of the character % in a format string marks the start

of a format specifier, and the associated formatting conversion
marks the end of the format specifier.

• A format specifier in the format string is replaced either by the
textual representation of the corresponding value or by the
specifier’s special meaning.

• The compiler does not provide much help regarding the validity of
the format specifier.

• Depending on the error in the format specifier, a corresponding
exception is thrown at runtime

Defining Format Specifiers
• The optional argument_index has the format i$, or it is the

< character.
• In the format i$, i is a decimal integer indicating the

position of the argument in the vararg array, starting with
position 1. The first argument is referenced by 1$, the
second by 2$, and so on.

• The < character indicates the same argument that was used
in the preceding format specifier in the format string, and
cannot therefore occur in the first format specifier.

Defining Format Specifiers
• The optional flag is a character that specifies the layout

of the output format.
• The optional width is a decimal integer indicating the

minimum number of characters to be written to the
output.

• The optional precision has the format .n, where n is a
decimal integer and is used usually to restrict the
number of characters. The specific behavior depends
on the conversion.

Formatting Conversions

Formatting Conversions

Flags

Selected Time/Date Composition
Conversions

Selected Format Exceptions

Using the format() Method
The destination object of a Formatter, mentioned
earlier, can be any one of the following:
• a StringBuilder, by default
• an Appendable, e.g., a String that implements

this interface
• a file specified either by its name or by a File

object
• a PrintStream, or another OutputStream

Using the format() Method
Various constructors in the Formatter class:
Formatter()

Formatter(Locale l)

Formatter(Appendable a)

Formatter(Appendable a, Locale l)

Formatter(File file)

Formatter(File file, String charset)

Formatter(File file, String charset, Locale l)

Formatter(OutputStream os)

Formatter(OutputStream os, String charset)

Formatter(OutputStream os, String charset, Locale l)

Formatter(String fileName)

Formatter(String fileName, String charset)

Formatter(String fileName, String charset, Locale l)

Formatter(PrintStream ps)

That’s all

