
Files and Streams

Input and Output

Java provides streams as a general mechanism
for dealing with data I/O.

Streams implement sequential access of data.

There are two kinds of streams: byte streams
and character streams (aka binary streams and
text streams, respectively).

Input and Output

• An input stream is an object that an application
can use to read a sequence of data, and an
output stream is an object that an application
can use to write a sequence of data.

• An input stream acts as a source of data, and an
output stream acts as a destination of data.

Input and Output
The following entities can act as both input and
output streams:
• an array of bytes or characters
• a file
• a pipe (a mechanism by which a program can

communicate data to another program during
execution)

• a network connection

Input and Output

• Streams can be chained with filters to provide
new functionality. In addition to dealing with bytes
and characters, streams are provided for input and
output of Java primitive values and objects.

• The java.io package also provides a general
interface to interact with the file system of the
host platform.

The File Class

• The File class provides a general machine-independent
interface for the file system of the underlying platform.

• A File object represents the pathname of a file or
directory in the host file system. An application can use
the functionality provided by the File class for handling
files and directories in the file system.

• The File class is not meant for handling the contents of
files.

The File Class

• The pathname for a file or directory is
specified using the naming conventions of the
host system.

• However, the File class defines platform-
dependent constants that can be used to
handle file and directory names in a platform-
independent way:

The File Class
public static final char separatorChar

public static final String separator

• Defines the character or string that separates the directory and the
file components in a pathname. This separator is '/', '\' or ':' for
Unix, Windows, and Macintosh, respectively.

public static final char pathSeparatorChar

public static final String pathSeparator

• Defines the character or string that separates the file or directory
names in a “path list.” This character is ':' or ';' for Unix and
Windows, respectively

The File Class

• Some examples of pathnames are:

/book/chapter1 on Unix

C:\book\chapter1 on Windows

HD:book:chapter1 on Macintosh

• Some examples of path lists are:

/book:/manual:/draft on Unix

C:\book;D:\manual;A:\draft on Windows

The File Class

• The File class has various constructors for associating a
file or a directory pathname to an object of the File сlass.

• Creating a File object does not mean creation of any file
or directory based on the pathname specified.

• A File instance, called the abstract pathname, is a
representation of the pathname of a file and directory.

• The pathname cannot be changed once the File object is
created.

The File Class Constructors
• File(String pathname)

The pathname (of a file or a directory) can be an absolute pathname or a
pathname relative to the current directory. An empty string as argument
results in an abstract pathname for the current directory.
• File(String directoryPathname, String fileName)

This creates a File object whose pathname is as follows:
directoryPathname + separator + fileName.
• File(File directory, String fileName)

If the directory argument is null, the resulting File object represents a file in
the current directory. If the directory argument is not null, it creates a File
object that represents a file in the given directory. The pathname of the file is
then the pathname of the directory File object + separator + fileName.

The File Class

A File object can also be used to query the file system for
information about a file or directory:

• whether the entry exists

• whether the File object represents a file or directory

• get and set read, write, or execute permissions for the entry

• get pathname information about the file or directory

• list all entries under a directory in the file system

Querying the File System
• String getName()

Returns the name of the file entry, excluding the specification of the directory
in which it resides.

• String getPath()

The method returns the (absolute or relative) pathname of the file
represented by the File object.

• String getAbsolutePath()

If the File object represents an absolute pathname, this pathname is
returned, otherwise the returned pathname is constructed by concatenating
the current directory pathname, the separator character and the pathname
of the File object.

Querying the File System
• String getCanonicalPath() throws IOException
Also platform-dependent, the canonical path usually specifies an absolute pathname in
which all relative references have been completely resolved.

• String getParent()
The parent part of the pathname of this File object is returned if one exists, otherwise the
null value is returned. The parent part is generally the prefix obtained from the pathname
after deleting the file or directory name component found after the last occurrence of the
separator character. However, this is not true for all platforms.

• boolean isAbsolute()
Whether a File object represents an absolute pathname can be determined using this
method.

Querying the File System
• long lastModified()

The modification time returned is encoded as a long value, and should
only be compared with other values returned by this method.

• long length()

Returns the size (in bytes) of the file represented by the File object.

• boolean equals(Object obj)

This method just compares the pathnames of the File objects, and returns
true if they are identical. On Unix systems, alphabetic case is significant in
comparing pathnames; on Windows systems it is not

File or Directory Existence
A File object is created using a pathname. Whether this
pathname denotes an entry that actually exists in the file
system can be checked using the exists() method:
• boolean exists()

Since a File object can represent a file or a directory, the
following methods can be used to distinguish whether a given
File object represents a file or a directory, respectively:
• boolean isFile()

• boolean isDirectory()

File and Directory Permissions

To check whether the specified file has write, read, or
execute permissions, the following methods can be used.

They throw a SecurityException if general access is not
allowed, i.e., the application is not even allowed to check
whether it can read, write or execute a file.
• boolean canWrite()

• boolean canRead()

• boolean canExecute()

File and Directory Permissions
Write, read and execute permissions can be set by calling the following methods.
If the first argument is true, the operation permission is set; otherwise it is cleared.
If the second argument is true, the permission only affects the owner; otherwise it
affects all users.
• boolean setReadable(boolean readable)

• boolean setReadable(boolean readable, boolean owner)

• boolean setWritable(boolean writable)

• boolean setWritable(boolean writable, boolean owner)

• boolean setExecutable(boolean executable)

• boolean setExecutable(boolean executable, boolean owner)

These methods throw a SecurityException if permission cannot be changed. It should
be noted that the exact interpretation of these permissions is platform dependent.

Listing Directory Entries
• String[] list()

• String[] list(FilenameFilter filter)

• File[] listFiles()

• File[] listFiles(FilenameFilter filter)

• File[] listFiles(FileFilter filter)

Listing Directory Entries

A filter is an object of a class that implements either of these two
interfaces:
interface FilenameFilter {

 boolean accept(File currentDirectory, String entryName);

}

interface FileFilter {

 boolean accept(File pathname);

}

Creating New Files and Directories
• boolean createNewFile() throws IOException

It creates a new, empty file named by the abstract pathname if, and
only if, a file with this name does not already exist. The returned value
is true if the file was successfully created, false if the file already exists.
Any I/O error results in an IOException.

• boolean mkdir()

• boolean mkdirs()

The mkdirs() method creates any intervening parent directories in the
pathname of the directory to be created

Renaming and Deleting
Files and Directories

A file or a directory can be renamed, using the following
method which takes the new pathname from its argument. It
throws a SecurityException if access is denied.
• boolean renameTo(File dest)

A file or a directory can be deleted using the following
method. In the case of a directory, it must be empty before it
can be deleted. It throws a SecurityException if access is
denied.
• boolean delete()

Byte Streams:
Input Streams and Output Streams

• The abstract classes InputStream and OutputStream are
the root of the inheritance hierarchies for handling the
reading and writing of bytes (Figure in the next slide).

• Their subclasses, implementing different kinds of input
and output streams, override methods from the
InputStream and OutputStream classes to customize the
reading and writing of bytes, respectively

Byte Streams:
Input Streams and Output Streams

The InputStream class:
• int read() throws IOException

• int read(byte[] b) throws IOException

• int read(byte[] b, int off, int len)
 throws IOException

Note that the first read() method reads a byte, but returns an int value.
The byte read resides in the eight least significant bits of the int value,
while the remaining bits in the int value are zeroed out.
The read() methods return the value –1 when the end of the stream is
reached.

Byte Streams:
Input Streams and Output Streams

The OutputStream class:
• void write(int b) throws IOException

• void write(byte[] b) throws IOException

• void write(byte[] b, int off, int len)

 throws IOException

The first write() method takes an int as argument,
but truncates it down to the eight least significant
bits before writing it out as a byte

Byte Streams:
Input Streams and Output Streams

A stream should be closed when no longer needed,
to free system resources.
void close() throws IOException

void flush() throws IOException //Only for OutputStream

Closing an output stream automatically flushes the
stream, meaning that any data in its internal buffer is
written out.
An output stream can also be manually flushed by
calling the second method.

Selected Input Streams

Selected Output Streams

File Input Streams
The file can be specified by its name, through a File object,
or using a FileDescriptor object.
• FileInputStream(String name) throws FileNotFoundException

• FileInputStream(File file) throws FileNotFoundException

• FileInputStream(FileDescriptor fdObj)

If the file does not exist, a FileNotFoundException is thrown.
If it exists, it is set to be read from the beginning.
A SecurityException is thrown if the file does not have read access.

File Output Streams
The file can be specified by its name, through a File object, or using a File Descriptor object.
• FileOutputStream(String name) throws FileNotFoundException

• FileOutputStream(String name, boolean append)
 throws FileNotFoundException

• FileOutputStream(File file) throws IOException

• FileOutputStream(FileDescriptor fdObj)

If the file does not exist, it is created.
If it exists, its contents are reset, unless the appropriate constructor is
used to indicate that output should be appended to the file.
A SecurityException is thrown if the file does not have write access or
it cannot be created.

Filter Streams
• A filter is a high-level stream that provides additional functionality

to an underlying stream to which it is chained. The data from the
underlying stream is manipulated in some way by the filter.

• The FilterInputStream and FilterOutputStream classes, together
with their subclasses, define input and output filter streams.

• The subclasses BufferedInputStream and BufferedOutputStream
implement filters that buffer input from and output to the
underlying stream, respectively.

• The subclasses DataInputStream and DataOutputStream
implement filters that allow binary representation of Java primitive
values to be read and written, respectively, to and from an
underlying stream.

Reading and Writing Binary Values
• The java.io package contains the two interfaces DataInput

and DataOutput, that streams can implement to allow
reading and writing of binary representations of Java
primitive values (boolean, char, byte, short, int, long, float,
double).

• The methods for writing binary representations of Java
primitive values are named writeX, where X is any Java
primitive data type.

• The methods for reading binary representations of Java
primitive values are similarly named readX.

The DataInput and DataOutput Interfaces

Writing Binary Values to a File

1. Create a FileOutputStream:
FileOutputStream outputFile =

 new FileOutputStream("primitives.data");

2. Create a DataOutputStream which is chained
to the FileOutputStream:
DataOutputStream outputStream =

 new DataOutputStream(outputFile);

Writing Binary Values to a File
3. Write Java primitive values using relevant writeX() methods:

outputStream.writeBoolean(true);

outputStream.writeChar('A'); // int written as Unicode char

outputStream.writeByte(Byte.MAX_VALUE); // int written as 8-bits byte

outputStream.writeShort(Short.MIN_VALUE);// int written as 16-bits short

outputStream.writeInt(Integer.MAX_VALUE);

outputStream.writeLong(Long.MIN_VALUE);

outputStream.writeFloat(Float.MAX_VALUE);

outputStream.writeDouble(Math.PI);

Note that in the case of char, byte, and short data types, the int argument to the
writeX() method is converted to the corresponding type, before it is written

Writing Binary Values to a File

4. Close the filter stream, which also closes the
underlying stream:

outputStream.close();

Stream Chaining for Reading and
Writing Binary Values to a File

Reading Binary Values From a File

1. Create a FileInputStream:
FileInputStream inputFile =

 new FileInputStream("primitives.data");

2. Create a DataInputStream which is chained to
the FileInputStream:
DataInputStream inputStream =

 new DataInputStream(inputFile);

Reading Binary Values From a File
3. Read the (exact number of) Java primitive values in the same
order they were written out, using relevant readX() methods:
boolean v = inputStream.readBoolean();

char c = inputStream.readChar();

byte b = inputStream.readByte();

short s = inputStream.readShort();

int i = inputStream.readInt();

long l = inputStream.readLong();

float f = inputStream.readFloat();

double d = inputStream.readDouble();

Reading Binary Values From a File

4. Close the filter stream, which also closes the
underlying stream:

inputStream.close();

Character Streams: Readers and Writers
• The abstract classes Reader and Writer are the roots of the

inheritance hierarchies for streams that read and write
Unicode characters using a specific character encoding (as
shown in next slide).

• A reader is an input character stream that reads a
sequence of Unicode characters, and a writer is an output
character stream that writes a sequence of Unicode
characters.

• Character encodings are used by readers and writers to
convert between external encoding and internal Unicode
characters.

Selected Readers

Readers
• Readers use the following methods for reading Unicode characters:
int read() throws IOException

int read(char cbuf[]) throws IOException

int read(char cbuf[], int off, int len) throws
IOException

• Note that the read() methods read the character as an int in the
range 0 to 65535 (0x0000–0xFFFF).

• The value –1 is returned if the end of the stream has been reached.
long skip(long n) throws IOException

• A reader can skip over characters using the skip() method.

Selected Writers

Writers
• Writers use the following methods for writing Unicode characters:

void write(int c) throws IOException

The write() method takes an int as argument, but writes only the least significant 16 bits.

void write(char[] cbuf) throws IOException

void write(String str) throws IOException

void write(char[] cbuf, int off, int length) throws IOException

void write(String str, int off, int length) throws IOException

• These methods write the characters from an array of characters or a string.

void close() throws IOException

void flush() throws IOException

Like byte streams, a character stream should be closed when no longer needed to free system resources.
Closing a character output stream automatically flushes the stream. A character output stream can also
be manually flushed.

Print Writers
• The capabilities of the OutputStreamWriter and

the InputStreamReader classes are limited, as
they primarily write and read characters.

• In order to write a text representation of Java
primitive values and objects, a PrintWriter should
be chained to either a writer, a byte output
stream, File, or a String file name, using one of
the following constructors:

Print Writers
PrintWriter(Writer out)

PrintWriter(Writer out, boolean autoFlush)

PrintWriter(OutputStream out)

PrintWriter(OutputStream out, boolean autoFlush)

PrintWriter(File file)

PrintWriter(File file, String charsetName)

PrintWriter(String fileName)

PrintWriter(String fileName, String charsetName)

The autoFlush argument specifies whether the PrintWriter should be flushed
when any println() method of the PrintWriter class is called.

Print Writers
• When the underlying writer is specified, the character

encoding supplied by the underlying writer is used.
• However, an OutputStream has no notion of any

character encoding, so the necessary intermediate
OutputStreamWriter is automatically created, which
will convert characters into bytes, using the default
character encoding.

• When supplying the File object or the file name, the
character encoding can be specified explicitly.

Print Methods of the PrintWriter Class

Print Methods of the PrintWriter Class
• The println() methods write the text representation of their argument to

the underlying stream, and then append a line-separator. The println()
methods use the correct platform-dependent line-separator.

• For example, on Unix platforms the line-separator is '\n' (newline), while on
Windows platforms it is "\r\n" (carriage return + newline) and on the
Macintosh it is '\r' (carriage return).

• The print() methods create a text representation of an object by calling the
toString() method on the object.

• The print() methods do not throw any IOException.
• Instead, the checkError() method of the PrintWriter class must be called to

check for errors.
• In addition, the PrintWriter class provides the format() method and the

convenient printf() method to write formatted values

Writing Text Files
FileOutputStream outputFile =

 new FileOutputStream("info.txt");

OutputStreamWriter outputStream =

 new OutputStreamWriter(outputFile);

PrintWriter printWriter1 =

 new PrintWriter(outputStream, true);

a)

b) FileOutputStream outputFile =

 new FileOutputStream("info.txt");

PrintWriter printWriter2 =

 new PrintWriter(outputFile, true);

c) FileWriter fileWriter = new FileWriter("info.txt");

PrintWriter printWriter3 =

 new PrintWriter(fileWriter, true);

d) PrintWriter printWriter3 =

 new PrintWriter("info.txt");

Reading Text Files
FileInputStream inputFile =

 new FileInputStream("info.txt");

InputStreamReader reader =

 new InputStreamReader(inputFile);

FileReader fileReader =

 new FileReader("info.txt");

Using Buffered Writers
The following code creates a PrintWriter whose output is buffered and the characters are written
using the 8859_1 character encoding (a):
FileOutputStream outputFile = new FileOutputStream("info.txt");

OutputStreamWriter outputStream =

 new OutputStreamWriter(outputFile, "8859_1");

BufferedWriter bufferedWriter1 = new BufferedWriter(outputStream);

PrintWriter printWriter1 = new PrintWriter(bufferedWriter1, true);

The following code creates a PrintWriter whose output is buffered, and the characters are written
using the default character encoding (b):
FileWriter fileWriter = new FileWriter("info.txt");

BufferedWriter bufferedWriter2 = new BufferedWriter(fileWriter);

PrintWriter printWriter2 = new PrintWriter(bufferedWriter2, true);

Using Buffered Writers

Using Buffered Readers
The following code creates a BufferedReader that can be used to read text lines from a
file, using the 8859_1 character encoding (a):
FileInputStream inputFile =

 new FileInputStream("info.txt");

InputStreamReader reader =

 new InputStreamReader(inputFile, "8859_1");

BufferedReader bufferedReader1 =

 new BufferedReader(reader);

The following code creates a BufferedReader that can be used to read text lines from a
file, using the default character encoding (b):
FileReader fileReader = new FileReader("lines.txt");

BufferedReader bufferedReader2 =

 new BufferedReader(fileReader);

Using Buffered Readers

The Standard Input, Output, and Error
Streams

• The standard output stream (usually the display) is represented by the
PrintStream object System.out.

• The standard input stream (usually the keyboard) is represented by the
InputStream object System.in. In other words, it is a byte input stream.

• The standard error stream (also usually the display) is represented by
System.err which is another object of the PrintStream class. The
PrintStream class offers print() methods which act as corresponding
print() methods from the PrintWriter class.

• These methods can be used to write output to System.out and
System.err. In other words, both System.out and System.err act like
PrintWriter, but in addition they have write() methods for writing bytes.

Comparison of Byte Streams and
Character Streams

The Console Class
• A console is a unique character-based device associated with a JVM.

Whether a JVM has a console depends on the platform, and also on
the manner in which the JVM is invoked.

• When the JVM is started from a command line, and the standard
input and output streams have not been redirected, the console
will normally correspond to the keyboard and the display.

• In any case, the console will be represented by an instance of the
class Console. This Console instance is obtained by calling the static
method console() of the System class.

• If there is no console associated with the JVM, the null value is
returned by this method.

The Console Class
// Obtaining the console:

Console console = System.console();

if (console == null) {

 System.err.println("No console available.");

 return;

}

// Continue ...

The Console Class

Object Serialization
• Object serialization allows an object to be transformed into a

sequence of bytes that can later be re-created (deserialized) into
the original object.

• After deserialization, the object has the same state as it had when it
was serialized, barring any data members that were not serializable.
This mechanism is generally known as persistence.

• Java provides this facility through the ObjectInput and
ObjectOutput interfaces, which allow the reading and writing of
objects from and to streams.

• These two interfaces extend the DataInput and DataOutput
interfaces, respectively

Object Serialization
• The ObjectOutputStream class and the ObjectInputStream

class implement the ObjectOutput interface and the
ObjectInput interface, respectively, providing methods to
write and read binary representation of objects as well as
Java primitive values.

• Figure gives an overview of how these classes can be
chained to underlying streams and some selected methods
they provide.

• The figure does not show the methods inherited from the
abstract OutputStream and InputStream superclasses.

Object Serialization

The ObjectOutputStream Class
• In order to store objects in a file and thus provide persistent storage for

objects, an ObjectOutputStream can be chained to a FileOutputStream:
FileOutputStream outputFile =
 new FileOutputStream("obj-storage.dat");

ObjectOutputStream outputStream =
 new ObjectOutputStream(outputFile);

• Objects can be written to the stream using the writeObject() method of
the ObjectOutputStream class:

final void writeObject(Object obj) throws IOException

The ObjectOutputStream Class
• The writeObject() method can be used to write any object to a stream,

including strings and arrays, as long as the object implements the
java.io.Serializable interface, which is a marker interface with no methods.

• The String class, the primitive wrapper classes and all array types
implement the Serializable interface.

• A serializable object can be any compound object containing references to
other objects, and all constituent objects that are serializable are
serialized recursively when the compound object is written out.

• This is true even if there are cyclic references between the objects.

• Each object is written out only once during serialization.

The ObjectOutputStream Class
• The following information is included when an object is serialized:

 the class information needed to reconstruct the object.
 the values of all serializable non-transient and non-static

members, including those that are inherited.

• An exception of the type java.io.NotSerializableException is thrown if a

non-serializable object is encountered during the serialization process.
• Note also that objects of subclasses that extend a serializable class are

always serializable.

The ObjectInputStream Class

• An ObjectInputStream is used to restore (deserialize) objects that
have previously been serialized using an ObjectOutputStream.

• An ObjectInputStream must be chained to an InputStream, using the
following constructor:

ObjectInputStream(InputStream in)

 throws IOException, StreamCorruptedException

The ObjectInputStream Class
• In order to restore objects from a file, an ObjectInputStream can be

chained to a FileInputStream:
FileInputStream inputFile =
 new FileInputStream("obj-storage.dat");

ObjectInputStream inputStream =
 new ObjectInputStream(inputFile);

• The method readObject() of the ObjectInputStream class is used to
read an object from the stream:

final Object readObject()
 throws OptionalDataException,
 ClassNotFoundException, IOException

Customizing Object Serialization
• The class of the object must implement the Serializable

interface if we want the object to be serialized. If this object
is a compound object, then all its constituent objects must
also be serializable, and so on.

• It is not always possible for a client to declare that a class is
Serializable. It might be declared final, and therefore not
extendable. The client might not have access to the code, or
extending this class with a serializable subclass might not be
an option.

• Java provides a customizable solution for serializing objects
in such cases.

Customizing Object Serialization
• The basic idea behind the scheme is to use default serialization as much as

possible, and provide “hooks” in the code for the serialization mechanism
to call specific methods to deal with objects or values that should not or
cannot be serialized by the default methods of the object streams.

• Any serializable object has the option of customizing its own serialization
if it implements the following pair of methods:

private void writeObject(ObjectOutputStream)
 throws IOException;
private void readObject(ObjectInputStream)
 throws IOException, ClassNotFoundException;

Serialization and Inheritance

• The inheritance hierarchy of an object also determines
what its state will be after it is deserialized.

• An object will have the same state at deserialization as
it had at the time it was serialized if all its superclasses
are also serializable.

• This is because the normal object creation procedure
using constructors is not run during deserialization

Serialization and Inheritance

• However, if any superclass of an object is not
serializable, then the normal creation procedure using
constructors is run, starting at the first non-serializable
superclass, all the way up to the Object class.

• This means that the state at deserialization might not
be the same as at the time the object was serialized,
because superconstructors run during deserialization
may have initialized the object’s state.

That’s all

