
Access Control

 A Java source file can have the following elements that,
if present, must be specified in the following order:

1. An optional package declaration to specify a package name.
2. Zero or more import declarations. Since import declarations
introduce type or static member names in the source code,
they must be placed before any type declarations.
3. Any number of top-level type declarations.

Class, enum, and interface declarations are collectively known
as type declarations. Since these declarations belong to the
same package, they are said to be defined at the top level,
which is the package level.

Packages

Defining Packages

package <fully qualified package name>;

• At most one package declaration can appear
in a source file, and it must be the first
statement in the source file.

• The package name is saved in the Java byte
code for the types contained in the package.

Defining Packages

• If a package declaration is omitted in a
compilation unit, the Java byte code for the
declarations in the compilation unit will
belong to an unnamed package (also called
the default package), which is typically
synonymous with the current working
directory on the host system.

Defining Packages
//File: Clown.java

package wizard.pandorasBox; // (1) Package declaration

import wizard.pandorasBox.artifacts.Ailment; // (2) Importing class

public class Clown implements Magic { /* ... */ }

interface Magic { /* ... */ }

//File: LovePotion.java

package wizard.pandorasBox; // (1) Package declaration

public class LovePotion { /* ... */ }

//File: Ailment.java

package wizard.pandorasBox.artifacts; // (1) Package declaration

public class Ailment { /* ... */ }

//File: Baldness.java

package wizard.spells; // (1)Package declaration

import wizard.pandorasBox.*; // (2) Type-import-on-demand

import wizard.pandorasBox.artifacts.*; // (3) Import from subpackage

public class Baldness extends Ailment { // (4) Abbreviated name for Ailment

 wizard.pandorasBox.LovePotion tlcOne; // (5) Fully qualified name

 LovePotion tlcTwo; // (6) Class in same package

 // ...

}

class LovePotion { /* ... */ }

Using Packages

Single-type-import:
import <fully qualified type name>;

Type-import-on-demand:
import <fully qualified package name>.*;

Using Packages

• An import declaration does not recursively
import subpackages.

• The declaration also does not result in
inclusion of the source code of the types.

• The declaration only imports type names.

• All compilation units implicitly import the
java.lang package

Importing Static Members of
Reference Types

• Single-static-import: imports a specific static
member from the designated type

import static <fully qualified type name>.<static member name>;

• Static-import-on-demand: imports all static
members in the designated type

import static <fully qualified type name>.*;

Example:
import static java.lang.Math.*;

double hypotenuse = hypot(x, y);

• Both forms require the use of the keyword static.

• In both cases, the fully qualified name of the reference
type we are importing from is required.

import static Example

import static java.lang.Math.PI; // (1) Static field

import static java.lang.Math.sqrt; // (2) Static method

// Only specified static members are imported.

public class CalculateI {

 public static void main(String[] args) {

 double x = 3.0, y = 4.0;

 double squareroot = sqrt(y); // Simple name of static method

 double hypotenuse = Math.hypot(x, y); // (3) Requires type name.

 double area = PI * y * y; // Simple name of static field

 System.out.printf("Square root: %.2f, hypotenuse: %.2f, area:

%.2f%n", squareroot, hypotenuse, area);

 }

}

Avoiding the Interface Constant
Antipattern

package mypkg;

public interface IMachineState {

 // Fields are public, static and final.

 int BUSY = 1;

 int IDLE = 0;

 int BLOCKED = -1;

}

import static mypkg.IMachineState.*;

// (1) Static import interface constants

public class MyFactory {

 public static void main(String[] args) {

 int[] states = { IDLE, BUSY, IDLE, BLOCKED };

 for (int s : states)

 System.out.print(s + " ");

 }

}

Importing Enum Constants

package mypkg;

public enum State { BUSY, IDLE, BLOCKED }

import mypkg.State; // (1) Single type import

import static mypkg.State.*; // (2) Static import on demand

import static java.lang.System.out; // (3) Single static import

public class Factory {

 public static void main(String[] args) {

 State[] states = {

 IDLE, BUSY, IDLE, BLOCKED // (4) Using static import implied by (2).

 };

 for (State s : states) // (5) Using type import implied by (1).

 out.print(s + " "); // (6) Using static import implied by (3).

 }

}

Shadowing by Importing
import static java.lang.System.out; // (1) Static import

import java.io.FileNotFoundException;

import java.io.PrintWriter; // (2) Single type import

public class ShadowingByImporting {

 public static void main(String[] args) throws FileNotFoundException {

 out.println("Calling println() in java.lang.System.out");

 PrintWriter pw = new PrintWriter("log.txt");

 writeInfo(pw);

 pw.flush();

 pw.close();

 }

 public static void writeInfo(PrintWriter out) {

 // Shadows java.lang.System.out

 out.println("Calling println() in the parameter out");

 System.out.println("Calling println() in java.lang.System.out");

 // Qualify

 }

}

Conflict in Importing Static Method
with the Same Signature

package mypkg;

public class Auxiliary {

 public static int binarySearch(int[] a, int key) {// As in java.util.Arrays.

 // Implementation is omitted.

 return -1;

 }

}

--

import static java.util.Collections.binarySearch; // 2 overloaded methods

import static java.util.Arrays.binarySearch; // + 18 overloaded methods

import static mypkg.Auxiliary.binarySearch; // (1) Causes signature conflict.

class MultipleStaticImport {

 public static void main(String[] args) {

 int index = binarySearch(new int[] {10, 50, 100}, 50); // (2) Not ok!

 System.out.println(index);

 }

// public static int binarySearch(int[] a, int key) { // (3)

// return -1;

// }

}

Running Code from Packages

If the current directory has the absolute pathname
/pgj
work and we want to run Clown.class in the
directory with the pathname ./wizard/pandorasBox,
the fully qualified name of the Clown class must be
specified in the java command
>java wizard.pandorasBox.Clown

This will load the class Clown from the byte code in
the file with the pathname
wizard/pandorasBox/Clown.class, and start the
execution of its main() method.

Scope Rules

• Class scope for members: how member
declarations are accessed within the class.

• Block scope for local variables: how local
variable declarations are accessed within a
block.

Accessing Members within a Class

Block Scope

Accessibility Modifiers for Top-Level
Type Declarations

• The accessibility modifier public can be used
to declare top-level types

• If the accessibility modifier is omitted, they
are only accessible in their own package and
not in any other packages or subpackages.

This is called package or default accessibility.

Other Modifiers for Classes

The modifiers abstract and final can be
applied to top-level and nested classes.

abstract Classes

final Classes

abstract and final

 Member Accessibility Modifiers

public Members

Member Accessibility Modifiers

protected Members

Member Accessibility Modifiers

Default Accessibility for Members

Member Accessibility Modifiers

private Members

Member Accessibility Modifiers

Summary

Other Modifiers for Members

• static

• final

• abstract

• synchronized

• native

• transient

• volatile

static Members

• Static variables (also called class variables)
exist in the class they are defined in only.

• Static methods are also known as class
methods. A static method in a class can
directly access other static members in the
class.

final Members

• A final variable of a primitive data type cannot
change its value once it has been initialized.

• A final variable of a reference type cannot
change its reference value once it has been
initialized. This effectively means that a final
reference will always refer to the same object.

• However, the keyword final has no bearing on
whether the state of the object denoted by the
reference can be changed or not.

final Members

• Final static variables are commonly used to
define manifest constants (also called named
constants)

• Note that a final variable need not be
initialized in its declaration, but it must be
initialized in the code once before it is used.

• These variables are also known as blank final
variables.

abstract Methods

An abstract method has the following syntax:
abstract <accessibility modifier> <return

type> <method name> (<parameter list>)

<throws clause>;

• The keyword abstract is mandatory in the header of an
abstract method declared in a class. Its class is then
incomplete and must be explicitly declared abstract

• Only an instance method can be declared abstract. Since
static methods cannot be overridden, declaring an
abstract static method makes no sense.

synchronized Methods

• Methods can be declared synchronized if it is
desirable that only one thread at a time can
execute a method of the object. Their execution is
then mutually exclusive among all threads.

• At any given time, at most one thread can be
executing a synchronized method on an object.
This discussion also applies to static synchronized
methods of a class.

native Methods

• Native methods are methods whose implementation
is not defined in Java but in another programming
language, for example, C or C++.

• Such a method can be declared as a member in a
Java class declaration. Since its implementation
appears elsewhere, only the method header is
specified in the class declaration.

• The keyword native is mandatory in the method
header.

transient Fields

• Often it is desirable to save the state of an
object. Such objects are said to be persistent.
In Java, the state of an object can be stored
using serialization

• Sometimes the value of a field in an object
should not be saved, in which case, the field
can be specified as transient in the class
declaration.

volatile Fields

The volatile modifier can be used to inform the
compiler that it should not attempt to perform
optimizations on the field, which could cause
unpredictable results when the field is accessed
by multiple threads

Summary of Other Modifiers for Members

