
Object-Oriented
Programming

in the Java language

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Part 1. Introduction to Objects

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

The progress of abstraction

• Assembly language is a small abstraction
of the underlying machine.

• Many so-called “imperative” languages that
followed (such as FORTRAN, BASIC, and C)
were abstractions of assembly language

• The object-oriented approach goes a step
further by providing tools for the programmer
to represent elements in the problem space

The progress of abstraction

• OOP allows you to describe the problem in
terms of the problem, rather than in terms of
the computer where the solution will run.

• There’s still a connection back to the
computer:

Each object looks quite a bit like a little computer —
it has a state, and it has operations that you can
ask it to perform

Characteristics of OOP

1. Everything is an object

2. A program is a bunch of objects telling each
other what to do by sending messages

3. Each object has its own memory made up of
other objects

4. Every object has a type

5. All objects of a particular type can receive
the same messages

What object is?

An object has state, behavior and identity

This means that an object can have internal data
(which gives it state), methods (to produce
behavior), and each object can be uniquely
distinguished from every other object — to put
this in a concrete sense, each object has a
unique address in memory

An object has an interface

In object-oriented programming we create new
data types, but all object-oriented programming
languages use the “class” keyword.

When you see the word “type” think “class” and
vice versa

Once a class is established, you can make as many
objects of that class as you like, and then
manipulate those objects as if they are the
elements that exist in the problem you are trying
to solve.

An object has an interface

Each object can satisfy only certain requests.
The requests you can make of an object are
defined by its interface, and the type is what
determines the interface

Composition (Aggregation)

“has-a”

Inheritance

“is-a”

Reusing the implementation

The simplest way to reuse a class is to just use
an object of that class directly, but you can also
place an object of that class inside a new class

Because you are composing a new class from
existing classes, this concept is called composition
(if the composition happens dynamically, it’s usually
called aggregation).

Composition is often referred to as a “has-a”
relationship, as in “A car has an engine”

Composition / Aggregation

Inheritance

We can take the existing class, clone it, and then
make additions and modifications to the clone

Polymorphism

Let’s consider a musician, that uses musical instrument for play

Example

You treat everything as an object, using a single
consistent syntax. Although you treat everything as
an object, the identifier you manipulate is actually a
“reference” to an object

You must create all the objects

When you create a reference, you want to connect
it with a new object. You do so, in general, with the
new operator:

String s = new String("asdf");

Scanner in = new Scanner(System.in);

Java Basics

Special case: primitive types

Java determines the size of each primitive type.

These sizes don’t change from one machine
architecture to another as they do in most languages.

This size invariance is one reason Java programs are
more portable than programs in most other languages.

Java Basics

Primitive types

Arrays in Java

• Java array is guaranteed to be initialized and
cannot be accessed outside of its range.

• The range checking comes at the price of
having a small amount of memory overhead
on each array as well as verifying the index
at run time, but the assumption is that the
safety and increased productivity are worth
the expense

Arrays in Java

• When you create an array of objects, you are
really creating an array of references, and
each of those references is automatically
initialized to a special value with its own
keyword: null

• You can also create an array of primitives.
Again, the compiler guarantees initialization
because it zeroes the memory for that array

Instrument[] ensemble = new Instrument[5];
int[] nums = new int[10];
double[] x = {0.1, -0.4, 0.6, 0.2};

Access modifiers

• Java provides access specifiers to allow the
library creator to say what is available to the
client programmer and what is not.

• The levels of access control from “most
access” to “least access” are public,
protected, package access (which has no
keyword), and private.

Access modifiers

For members (fields and methods)

For top-level types (Classes, Interfaces, Enums…)

Other access modifiers

For top-level types (Classes, Interfaces, Enums…)

Other access modifiers

For members (fields and methods)

Example

Initialization & Cleanup

• C++ introduced the concept of a constructor, a
special method automatically called when an
object is created.

• Java also adopted the constructor, and in
addition has a garbage collector that
automatically releases memory resources
when they’re no longer being used.

Guaranteed initialization
with the constructor

• In Java, creation and initialization are unified
concepts – you can’t have one without the other.

• The constructor is an unusual type of method
because it has no return value.

• This is distinctly different from a void return
value, in which the method returns nothing but
you still have the option to make it return
something else.

• Constructors return nothing and you don’t have
an option (the new expression does return a
reference to the newly created object, but the
constructor itself has no return value).

Example

Method overloading

• Constructor’s name is predetermined by the name
of the class, there can be only one constructor
name.

• Suppose you build a class that can initialize itself in
a standard way or by reading information from a
file. You need two constructors, the default
constructor and one that takes a String as an
argument, which is the name of the file from which
to initialize the object.
• Both are constructors, so they must have the same

name – the name of the class.
• Method overloading is a must for constructors, it’s a

general convenience and can be used with any method.

Distinguishing overloaded
methods

• There’s a simple rule: Each overloaded method
must take a unique list of argument types

• You cannot use return value types to distinguish
overloaded methods

Default constructors

When (if) you create a class that has no
constructors, the compiler will automatically
create a default constructor for you.

Default constructors

However, if you define any constructors (with or
without arguments), the compiler will not
synthesize one for you

this keyword

• Suppose you’re inside a method and you’d like to get
the reference to the current object.
Since that reference is passed secretly by the
compiler, there’s no identifier for it.

• However, for this purpose there’s a keyword: this.

• The this keyword – which can be used only inside a
non-static method – produces the reference to the
object that the method has been called for.

• When you write several constructors for a class,
there are times when you’d like to call one
constructor from another to avoid duplicating code.

• You can make such a call by using the this keyword

Calling constructors from
constructors

• With the this keyword in mind, you can more
fully understand what it means to make a
method static. It means that there is no this
for that particular method.

• You cannot call non-static methods from
inside static methods (although the reverse is
possible), and you can call a static method for
the class itself, without any object.

The meaning of static

Cleanup: finalization and
garbage collection

It is important to distinguish between C++ and Java:
- in C++, objects always get destroyed,
- in Java, objects do not always get garbage collected.
1. Your objects might not get garbage collected.
2. Garbage collection is not destruction.
3. Garbage collection is only about memory.
• Java doesn’t allow you to create local objects – you

must always use new.
• But in Java, there’s no “delete” for releasing the object,

because the garbage collector releases the storage for
you.

• So, one could say that because of garbage collection,
Java has no destructor.

Member initialization

If a primitive is a field in a class, however, things are a
bit different. As you saw in previous lectures, each
primitive field of a class is guaranteed to get an initial
value.

Java goes out of its way to guarantee that variables
are properly initialized before they are used.

• What happens if you want to give a variable
an initial value?

• One direct way to do this is simply to assign
the value at the point you define the variable
in the class. (Notice you cannot do this in C++)

Specifying initialization

• Interfaces and abstract classes provide more structured way
to separate interface from implementation

• If you have an abstract class like Instrument, objects of that
specific class almost always have no meaning. You create an
abstract class when you want to manipulate a set of classes
through its common interface.

• Instrument is meant to express only the interface, and not a
particular implementation, so creating an Instrument object
makes no sense, and you’ll probably want to prevent the
user from doing it.

Interfaces

• The interface keyword produces a completely
abstract class, one that provides no implementation
at all*.

• It allows the creator to determine method names,
argument lists, and return types, but no method
bodies*.

• An interface provides only a form, but no
implementation.

Interfaces

* Java 8 interface changes include static methods and default
methods in interfaces. Prior to Java 8, we could have only
method declarations in the interfaces. But from Java 8, we can
have default methods and static methods in the interfaces.

Default methods

1. Java interface default methods will help us in extending
interfaces without having the fear of breaking
implementation classes.

2. Java interface default methods has bridge down the
differences between interfaces and abstract classes.

3. Java 8 interface default methods will help us in avoiding
utility classes, such as all the Collections class method can be
provided in the interfaces itself.

4. Java interface default methods will help us in removing base
implementation classes, we can provide default
implementation and the implementation classes can chose
which one to override.

Default methods

5. One of the major reason for introducing default methods in
interfaces is to enhance the Collections API in Java 8 to
support lambda expressions.

6. If any class in the hierarchy has a method with same
signature, then default methods become irrelevant. A
default method cannot override a method from
java.lang.Object.

7. Java interface default methods are also referred to as
Defender Methods or Virtual extension methods.

Static methods

1. Java interface static method is part of interface, we can’t use
it for implementation class objects.

2. Java interface static methods are good for providing utility
methods, for example null check, collection sorting etc.

3. Java interface static method helps us in providing security by
not allowing implementation classes to override them.

4. We can’t define interface static method for Object class
methods.

5. We can use java interface static methods to remove utility
classes such as Collections and move all of it’s static methods
to the corresponding interface, that would be easy to find
and use..

Example

Questions?

Object-Oriented
Programming

in the Java language

Yevhen Berkunskyi, NUoS
eugeny.berkunsky@gmail.com

http://www.berkut.mk.ua

Part 1. Introduction to Objects

mailto:eugeny.berkunsky@gmail.com
http://www.berkut.mk.ua/

